Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, China.
Acta Biomater. 2024 Nov;189:399-412. doi: 10.1016/j.actbio.2024.09.029. Epub 2024 Sep 21.
Understanding the viscoelastic properties of atherosclerotic plaques at rupture-prone scales is crucial for assessing their vulnerability. Here, we develop a Hybrid Hierarchical theory-Microrheology (HHM) approach, enabling the analysis of multiscale mechanical variations and distribution changes in regional tissue viscoelasticity within plaques across different spatial scales. We disclose a universal two-stage power-law rheology in plaques, characterized by distinct power-law exponents (α and α), which serve as mechanical indexes for plaque components and assessing mechanical gradients. We further propose a self-similar hierarchical theory that effectively delineates plaque heterogeneity from the cytoplasm, cell, to tissue levels. Moreover, our proposed multi-layer perceptron model addresses the viscoelastic heterogeneity and gradients within plaques, offering a promising diagnostic strategy for identifying unstable plaques. These findings not only advance our understanding of plaque mechanics but also pave the way for innovative diagnostic approaches in cardiovascular disease management. STATEMENT OF SIGNIFICANCE: Our study pioneers a Hybrid Hierarchical theory-Microrheology (HHM) approach to dissect the intricate viscoelasticity of atherosclerotic plaques, focusing on distinct components including cap fibrosis, lipid pools, and intimal fibrosis. We unveil a universal two-stage power-law rheology capturing mechanical variations across plaque structures. The proposed hierarchical model adeptly captures viscoelasticity changes from cytoplasm, cell to tissue levels. Based on the newly proposed markers, we further develop a machine learning (ML) diagnostic model that sets precise criteria for evaluating plaque components and heterogeneity. This work not only reveals the comprehensive mechanical heterogeneity within plaques but also introduces a mechanical marker-based ML strategy for assessing plaque conditions, offering a significant leap towards understanding and diagnosing atherosclerotic risks.
了解易破裂斑块的黏弹性特性对于评估其脆弱性至关重要。在这里,我们开发了一种混合分层理论-微流变学(HHM)方法,能够分析斑块内不同空间尺度的多尺度力学变化和区域性组织黏弹性分布变化。我们揭示了斑块中普遍存在的两段幂律流变学,其特征是具有不同的幂律指数(α 和α),它们可作为斑块成分的力学指标,并评估力学梯度。我们进一步提出了一种自相似分层理论,可有效地从细胞质、细胞到组织水平上划分斑块的异质性。此外,我们提出的多层感知器模型解决了斑块内的黏弹性异质性和梯度问题,为识别不稳定斑块提供了一种有前途的诊断策略。这些发现不仅增进了我们对斑块力学的理解,也为心血管疾病管理中的创新诊断方法铺平了道路。
我们的研究开创了一种混合分层理论-微流变学(HHM)方法,用于剖析动脉粥样硬化斑块复杂的黏弹性,重点研究包括帽纤维、脂质池和内膜纤维在内的不同成分。我们揭示了一种普遍的两段幂律流变学,能够捕捉斑块结构中的力学变化。所提出的分层模型能够巧妙地捕捉从细胞质、细胞到组织水平的黏弹性变化。基于新提出的标志物,我们进一步开发了一种基于机器学习(ML)的诊断模型,该模型为评估斑块成分和异质性设定了精确的标准。这项工作不仅揭示了斑块内的全面力学异质性,还引入了一种基于力学标志物的 ML 策略来评估斑块状况,为理解和诊断动脉粥样硬化风险提供了重大进展。