Lau Cia-Hin, Huang Siping, Zhu Haibao
Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China.
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China.
Crit Rev Biotechnol. 2025 Jun;45(4):859-886. doi: 10.1080/07388551.2024.2399560. Epub 2024 Sep 22.
CRISPR-based diagnostics (CRISPR/Dx) have revolutionized the field of molecular diagnostics. It enables home self-test, field-deployable, and point-of-care testing (POCT). Despite the great potential of CRISPR/Dx in diagnoses of biologically complex diseases, preamplification of the template often is required for the sensitive detection of low-abundance nucleic acids. Various amplification-free CRISPR/Dx systems were recently developed to enhance signal detection at sufficient sensitivity. Broadly, these amplification-free CRISPR/Dx systems are classified into five groups depending on the signal enhancement strategies employed: CRISPR/Cas12a and/or CRISPR/Cas13a are integrated with: (1) other catalytic enzymes (Cas14a, Csm6, Argonaute, duplex-specific nuclease, nanozyme, or T7 exonuclease), (2) rational-designed oligonucleotides (multivalent aptamer, tetrahedral DNA framework, RNA G-quadruplexes, DNA roller machine, switchable-caged guide RNA, hybrid locked RNA/DNA probe, hybridized cascade probe, or "U" rich stem-loop RNA), (3) nanomaterials (nanophotonic structure, gold nanoparticle, micromotor, or microbeads), (4) electrochemical and piezoelectric plate biosensors (SERS nanoprobes, graphene field-effect transistor, redox probe, or primer exchange reaction), or (5) cutting-edge detection technology platforms (digital bioanalysis, droplet microfluidic, smartphone camera, or single nanoparticle counting). Herein, we critically discuss the advances, pitfalls and future perspectives for these amplification-free CRISPR/Dx systems in nucleic acids detection. The continued refinement of these CRISPR/Dx systems will pave the road for rapid, cost-effective, ultrasensitive, and ultraspecific on-site detection without resorting to target amplification, with the ultimate goal of establishing CRISPR/Dx as the paragon of diagnostics.
基于CRISPR的诊断技术(CRISPR/Dx)彻底改变了分子诊断领域。它能够实现家庭自检、现场部署和即时检测(POCT)。尽管CRISPR/Dx在生物复杂疾病诊断方面具有巨大潜力,但对于低丰度核酸的灵敏检测,通常需要对模板进行预扩增。最近开发了各种无扩增的CRISPR/Dx系统,以在足够的灵敏度下增强信号检测。大致来说,这些无扩增的CRISPR/Dx系统根据所采用的信号增强策略分为五类:CRISPR/Cas12a和/或CRISPR/Cas13a与以下物质整合:(1)其他催化酶(Cas14a、Csm6、Argonaute、双链特异性核酸酶、纳米酶或T7核酸外切酶),(2)合理设计的寡核苷酸(多价适体、四面体DNA框架、RNA G-四链体、DNA滚环机器、可切换笼化引导RNA、杂交锁定RNA/DNA探针、杂交级联探针或富含“U”的茎环RNA),(3)纳米材料(纳米光子结构、金纳米颗粒、微马达或微珠),(4)电化学和压电板生物传感器(表面增强拉曼散射纳米探针、石墨烯场效应晶体管、氧化还原探针或引物交换反应),或(5)前沿检测技术平台(数字生物分析、液滴微流控、智能手机相机或单纳米颗粒计数)。在此,我们批判性地讨论这些无扩增的CRISPR/Dx系统在核酸检测方面的进展、陷阱和未来前景。这些CRISPR/Dx系统的不断完善将为无需靶标扩增的快速、经济高效、超灵敏和超特异性现场检测铺平道路,最终目标是将CRISPR/Dx确立为诊断的典范。