Suppr超能文献

使用机器学习方法预测老年患者中基于营养不良的贫血症。

Predicting malnutrition-based anemia in geriatric patients using machine learning methods.

作者信息

Göl Mehmet, Aktürk Cemal, Talan Tarık, Vural Mehmet Sait, Türkbeyler İbrahim Halil

机构信息

Department of Physiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey.

Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep, Türkiye.

出版信息

J Eval Clin Pract. 2025 Mar;31(2):e14142. doi: 10.1111/jep.14142. Epub 2024 Sep 23.

Abstract

BACKGROUND

Anemia due to malnutrition may develop as a result of iron, folate and vitamin B12 deficiencies. This situation poses a higher risk of morbidity and mortality in the geriatric population than in other age groups. Therefore, early diagnosis of anemia and early initiation of treatment is very important. This study aims to predict the diagnosis of anemia with using machine learning (ML) methods in geriatric patients followed in an outpatient clinic.

METHODS

In line with the purpose of the study, anemia classification was made by analysing patients' hemogram and biochemistry blood values and medical data such as malnutrition, physical and cognitive activity scores with ML methods.

RESULTS

In our data set consisting of 438 patient observations, the most successful ML algorithm was the J48 algorithm with 97.77% accuracy. In the continuation of the study, the predictive performance of anemia was investigated by excluding blood values and selecting only attributes consisting of malnutrition and physical activity scores. In this case, the most successful prediction was obtained with the Random Forest algorithm with 85.39% accuracy.

CONCLUSIONS

The study showed that anemia can be predicted with high accuracy in geriatric patients without hemogram data. Additionally, our geriatric data set was shared with researchers for future research. Thus, it has contributed to the literature by opening a new path for studies on subjects such as comparing classification performances with new methodologies or predicting different diseases in geriatric patients.

摘要

背景

由于铁、叶酸和维生素B12缺乏,可能会出现营养不良性贫血。与其他年龄组相比,这种情况在老年人群中导致发病和死亡的风险更高。因此,贫血的早期诊断和早期治疗的启动非常重要。本研究旨在使用机器学习(ML)方法预测在门诊随访的老年患者的贫血诊断。

方法

根据研究目的,通过ML方法分析患者的血常规和生化血液值以及营养不良、身体和认知活动评分等医学数据,进行贫血分类。

结果

在我们由438例患者观察数据组成的数据集中,最成功的ML算法是J48算法,准确率为97.77%。在研究的后续阶段,通过排除血液值并仅选择由营养不良和身体活动评分组成的属性,研究了贫血的预测性能。在这种情况下,使用随机森林算法获得了最成功的预测,准确率为85.39%。

结论

该研究表明,在没有血常规数据的老年患者中,可以高精度地预测贫血。此外,我们的老年数据集已与研究人员共享以供未来研究。因此,它通过为诸如用新方法比较分类性能或预测老年患者的不同疾病等主题的研究开辟新途径,为文献做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c22/11938403/0ee24127e0e0/JEP-31-0-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验