Suppr超能文献

班扎夫随机森林:基于一致性的合作博弈论随机森林

Banzhaf random forests: Cooperative game theory based random forests with consistency.

机构信息

Department of Computer Science and Technology, Ocean University of China, 238 Songling Road, Qingdao 266100, China.

Department of Computer Science and Technology, Ocean University of China, 238 Songling Road, Qingdao 266100, China.

出版信息

Neural Netw. 2018 Oct;106:20-29. doi: 10.1016/j.neunet.2018.06.006. Epub 2018 Jun 28.

Abstract

Random forests algorithms have been widely used in many classification and regression applications. However, the theory of random forests lags far behind their applications. In this paper, we propose a novel random forests classification algorithm based on cooperative game theory. The Banzhaf power index is employed to evaluate the power of each feature by traversing possible feature coalitions. Hence, we call the proposed algorithm Banzhaf random forests (BRFs). Unlike the previously used information gain ratio, which only measures the power of each feature for classification and pays less attention to the intrinsic structure of the feature variables, the Banzhaf power index can measure the importance of each feature by computing the dependency among the group of features. More importantly, we have proved the consistency of BRFs, which narrows the gap between the theory and applications of random forests. Extensive experiments on several UCI benchmark data sets and three real world applications show that BRFs perform significantly better than existing consistent random forests on classification accuracy, and better than or at least comparable with Breiman's random forests, support vector machines (SVMs) and k-nearest neighbors (KNNs) classifiers.

摘要

随机森林算法已经广泛应用于许多分类和回归应用中。然而,随机森林的理论远远落后于其应用。在本文中,我们提出了一种基于合作博弈理论的新的随机森林分类算法。Banzhaf 势力指数用于通过遍历可能的特征联盟来评估每个特征的权力。因此,我们称所提出的算法为 Banzhaf 随机森林(BRFs)。与之前使用的信息增益比不同,信息增益比仅用于衡量每个特征的分类能力,而较少关注特征变量的内在结构,Banzhaf 势力指数可以通过计算特征组之间的依赖性来衡量每个特征的重要性。更重要的是,我们已经证明了 BRFs 的一致性,这缩小了随机森林理论和应用之间的差距。在几个 UCI 基准数据集和三个实际应用中的广泛实验表明,BRFs 在分类准确性方面明显优于现有的一致随机森林,并且优于或至少与 Breiman 的随机森林、支持向量机(SVMs)和 k-最近邻(KNNs)分类器相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验