Suppr超能文献

用于治疗和管理 COVID-19 的 NICE 搜索筛选器:在 MEDLINE 和 Embase(Ovid)中的验证。

The NICE search filters for treating and managing COVID-19: validation in MEDLINE and Embase (Ovid).

出版信息

J Med Libr Assoc. 2024 Jul 1;112(3):225-237. doi: 10.5195/jmla.2024.1806. Epub 2024 Jul 29.

Abstract

OBJECTIVE

In this paper we report how the United Kingdom's National Institute for Health and Care Excellence (NICE) search filters for treating and managing COVID-19 were validated for use in MEDLINE (Ovid) and Embase (Ovid). The objective was to achieve at least 98.9% for recall and 64% for precision.

METHODS

We did two tests of recall to finalize the draft search filters. We updated the data from an earlier peer-reviewed publication for the first recall test. For the second test, we collated a set of systematic reviews from Epistemonikos COVID-19 L.OVE and extracted their primary studies. We calculated precision by screening all the results retrieved by the draft search filters from a targeted sample covering 2020-23. We developed a gold-standard set to validate the search filter by using all articles available from the "Treatment and Management" subject filter in the Cochrane COVID-19 Study Register.

RESULTS

In the first recall test, both filters had 99.5% recall. In the second test, recall was 99.7% and 99.8% in MEDLINE and Embase respectively. Precision was 91.1% in a deduplicated sample of records. In validation, we found the MEDLINE filter had recall of 99.86% of the 14,625 records in the gold-standard set. The Embase filter had 99.88% recall of 19,371 records.

CONCLUSION

We have validated search filters to identify records on treating and managing COVID-19. The filters may require subsequent updates, if new SARS-CoV-2 variants of concern or interest are discussed in future literature.

摘要

目的

本文报告了英国国家卫生与保健优化研究所(NICE)用于治疗和管理 COVID-19 的检索过滤器如何在 MEDLINE(Ovid)和 Embase(Ovid)中进行验证。目标是实现至少 98.9%的召回率和 64%的精度。

方法

我们进行了两次召回测试来最终确定草案检索过滤器。我们使用之前发表的同行评审出版物的数据进行了第一次召回测试。对于第二次测试,我们从 Epistemonikos COVID-19 L.OVE 中收集了一组系统评价,并提取了它们的主要研究。我们通过从涵盖 2020-23 年的目标样本中筛选草案检索过滤器检索到的所有结果来计算精度。我们开发了一个黄金标准集,通过使用 Cochrane COVID-19 研究注册中“治疗和管理”主题过滤器中的所有文章来验证搜索过滤器。

结果

在第一次召回测试中,两个过滤器的召回率均为 99.5%。在第二次测试中,MEDLINE 和 Embase 的召回率分别为 99.7%和 99.8%。在去重记录样本中,精度为 91.1%。在验证中,我们发现 MEDLINE 过滤器对黄金标准集中的 14625 条记录的召回率为 99.86%。Embase 过滤器对 19371 条记录的召回率为 99.88%。

结论

我们已经验证了用于识别关于治疗和管理 COVID-19 的记录的检索过滤器。如果未来文献中讨论了新的 SARS-CoV-2 变体或相关变体,这些过滤器可能需要进行后续更新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c60/11412126/7035ebbf3034/jmla-112-3-225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验