Suppr超能文献

双环酰胺笼中的电荷辅助氢键:一种在水中进行阴离子识别和催化的有效方法。

Charge-assisted hydrogen bonding in a bicyclic amide cage: an effective approach to anion recognition and catalysis in water.

作者信息

Xu Chengkai, Tran Quy Gia, Liu Dexin, Zhai Canjia, Wojtas Lukasz, Liu Wenqi

机构信息

Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA

出版信息

Chem Sci. 2024 Sep 18;15(39):16040-9. doi: 10.1039/d4sc05236f.

Abstract

Hydrogen bonding is prevalent in biological systems, dictating a myriad of life-sustaining functions in aqueous environments. Leveraging hydrogen bonding for molecular recognition in water encounters significant challenges in synthetic receptors on account of the hydration of their functional groups. Herein, we introduce a water-soluble hydrogen bonding cage, synthesized a dynamic approach, exhibiting remarkable affinities and selectivities for strongly hydrated anions, including sulfate and oxalate, in water. We illustrate the use of charge-assisted hydrogen bonding in amide-type synthetic receptors, offering a general molecular design principle that applies to a wide range of amide receptors for molecular recognition in water. This strategy not only revalidates the functions of hydrogen bonding but also facilitates the effective recognition of hydrophilic anions in water. We further demonstrate an unconventional catalytic mechanism through the encapsulation of the anionic oxalate substrate by the cationic cage, which effectively inverts the charges associated with the substrate and overcomes electrostatic repulsions to facilitate its oxidation by the anionic MnO . Technical applications using this receptor are envisioned across various technical applications, including anion sensing, separation, catalysis, medical interventions, and molecular nanotechnology.

摘要

氢键在生物系统中普遍存在,决定了水性环境中无数维持生命的功能。由于合成受体的官能团会发生水合作用,利用氢键在水中进行分子识别面临重大挑战。在此,我们介绍一种通过动态方法合成的水溶性氢键笼,它在水中对包括硫酸根和草酸根在内的强水合阴离子表现出显著的亲和力和选择性。我们阐述了电荷辅助氢键在酰胺型合成受体中的应用,提供了一种适用于多种酰胺受体在水中进行分子识别的通用分子设计原则。该策略不仅重新验证了氢键的功能,还促进了对水中亲水性阴离子的有效识别。我们进一步通过阳离子笼对阴离子草酸根底物的包封展示了一种非常规催化机制,该机制有效地反转了与底物相关的电荷并克服了静电排斥,以促进其被阴离子MnO氧化。预计该受体在各种技术应用中都有应用前景,包括阴离子传感、分离、催化、医学干预和分子纳米技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/202a/11463323/de4d7f823743/d4sc05236f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验