Cardona-Lamarca Teresa, Baum Thomas Y, Zaffino Rossella, Herrera Daniel, Pfattner Raphael, Gómez-Coca Silvia, Ruiz Eliseo, González-Campo Arántzazu, van der Zant Herre S J, Aliaga-Alcalde Núria
ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autonoma de Barcelona 08913 Bellaterra Spain.
Kavli Institute of Nanoscience, Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands.
Chem Sci. 2024 Sep 6;15(39):16347-54. doi: 10.1039/d4sc04969a.
Exploiting the potential of curcuminoids (CCMoids) as molecular platforms, a new 3.53 nm extended system (pyACCMoid, 2) has been designed in two steps by reacting a CCMoid with amino-terminal groups (NH-CCMoid, 1, of 1.79 nm length) with polycyclic aromatic hydrocarbon (PAH) aldehydes. CCMoid 2 contains pyrene units at both ends as anchoring groups to optimize its trapping in graphene nano-junctions created by feedback-controlled electro-burning. The measured - characteristics show gate-dependent behaviour at room temperature and 10 K, with increased conductance values compared to shorter CCMoids previously reported, and in agreement with DFT calculations. Our results show that the adjusted molecular design improves the conductance, as system 2 separates the conductive backbone from the anchor groups, which tend to adopt a planar configuration upon contact with the graphene electrodes. DFT calculations using Green functions of a set of different molecular conformations of 2 on graphene electrodes show a direct relationship between the units ( pyrene, amide, ), in the molecule, through which electrons are injected and the conductance values; where the size of the spacing between the graphene electrodes contributes but is not the dominant factor, and thus, counter-intuitively the smallest spacing gives one of the lowest conductance values.
利用姜黄素类化合物(CCMoids)作为分子平台的潜力,通过将具有氨基端基(长度为1.79 nm的NH-CCMoid,1)的CCMoid与多环芳烃(PAH)醛反应,分两步设计了一种新的3.53 nm扩展系统(pyACCMoid,2)。CCMoid 2在两端都含有芘单元作为锚定基团,以优化其在通过反馈控制电烧蚀产生的石墨烯纳米结中的捕获。测量的特性表明,在室温及10 K下,其行为依赖于栅极,与先前报道的较短CCMoids相比,电导值有所增加,且与密度泛函理论(DFT)计算结果一致。我们的结果表明,调整后的分子设计提高了电导率,因为系统2将导电主链与锚定基团分开,锚定基团在与石墨烯电极接触时倾向于采用平面构型。使用2在石墨烯电极上的一组不同分子构象的格林函数进行的DFT计算表明,分子中电子注入所通过的单元(芘、酰胺等)与电导值之间存在直接关系;其中石墨烯电极之间间距的大小有影响,但不是主导因素,因此,与直觉相反,最小间距给出了最低电导值之一。