Suppr超能文献

估计具有吸收态的有限马尔可夫链中的随机效应:在认知数据中的应用。

Estimating random effects in a finite Markov chain with absorbing states: Application to cognitive data.

作者信息

Wang Pei, Abner Erin L, Liu Changrui, Fardo David W, Schmitt Frederick A, Jicha Gregory A, Van Eldik Linda J, Kryscio Richard J

机构信息

Department of Statistics, Miami University, Oxford, Ohio.

Department of Epidemiology, University of Kentucky, Lexington, Kentucky.

出版信息

Stat Neerl. 2023 Aug;77(3):304-321. doi: 10.1111/stan.12286. Epub 2023 Jan 19.

Abstract

Finite Markov chains with absorbing states are popular tools for analyzing longitudinal data with categorical responses. The one step transition probabilities can be defined in terms of fixed and random effects but it is difficult to estimate these effects due to many unknown parameters. In this article we propose a three-step estimation method. In the first step the fixed effects are estimated by using a marginal likelihood function, in the second step the random effects are estimated after substituting the estimated fixed effects into a joint likelihood function defined as a h-likelihood, and in the third step the covariance matrix for the vector of random effects is estimated using the Hessian matrix for this likelihood function. An application involving an analysis of longitudinal cognitive data is used to illustrate the method.

摘要

具有吸收态的有限马尔可夫链是分析具有分类响应的纵向数据的常用工具。一步转移概率可以根据固定效应和随机效应来定义,但由于存在许多未知参数,估计这些效应很困难。在本文中,我们提出了一种三步估计方法。第一步,使用边际似然函数估计固定效应;第二步,将估计出的固定效应代入定义为h-似然的联合似然函数后估计随机效应;第三步,使用该似然函数的海森矩阵估计随机效应向量的协方差矩阵。一个涉及纵向认知数据分析的应用实例用来说明该方法。

相似文献

1
Estimating random effects in a finite Markov chain with absorbing states: Application to cognitive data.
Stat Neerl. 2023 Aug;77(3):304-321. doi: 10.1111/stan.12286. Epub 2023 Jan 19.
2
Reduced rank multinomial logistic regression in Markov chains with application to cognitive data.
Stat Med. 2021 May 20;40(11):2650-2664. doi: 10.1002/sim.8923. Epub 2021 Mar 10.
3
A joint logistic regression and covariate-adjusted continuous-time Markov chain model.
Stat Med. 2017 Dec 10;36(28):4570-4582. doi: 10.1002/sim.7387. Epub 2017 Jul 10.
5
Robustly estimating the marginal likelihood for cognitive models via importance sampling.
Behav Res Methods. 2021 Jun;53(3):1148-1165. doi: 10.3758/s13428-020-01348-w.
7
VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS.
Ann Stat. 2012 Aug 1;40(4):2043-2068. doi: 10.1214/12-AOS1028.
8
Copula-based markov chain logistic regression modeling on binomial time series data.
MethodsX. 2023 Dec 9;12:102509. doi: 10.1016/j.mex.2023.102509. eCollection 2024 Jun.
9
A simulation study to assess statistical methods for binary repeated measures data.
Prev Vet Med. 2010 Feb 1;93(2-3):81-97. doi: 10.1016/j.prevetmed.2009.10.004. Epub 2009 Dec 11.

本文引用的文献

1
Reduced rank multinomial logistic regression in Markov chains with application to cognitive data.
Stat Med. 2021 May 20;40(11):2650-2664. doi: 10.1002/sim.8923. Epub 2021 Mar 10.
2
A multilevel latent Markov model for the evaluation of nursing homes' performance.
Biom J. 2018 Sep;60(5):962-978. doi: 10.1002/bimj.201700223. Epub 2018 Jul 30.
3
Self-reported head injury and risk of late-life impairment and AD pathology in an AD center cohort.
Dement Geriatr Cogn Disord. 2014;37(5-6):294-306. doi: 10.1159/000355478. Epub 2013 Dec 31.
5
Multi-stage transitional models with random effects and their application to the Einstein aging study.
Biom J. 2011 Nov;53(6):938-55. doi: 10.1002/bimj.200900259. Epub 2011 Oct 21.
7
Transitions to mild cognitive impairments, dementia, and death: findings from the Nun Study.
Am J Epidemiol. 2007 Jun 1;165(11):1231-8. doi: 10.1093/aje/kwm085. Epub 2007 Apr 12.
8
Type I and Type II error under random-effects misspecification in generalized linear mixed models.
Biometrics. 2007 Dec;63(4):1038-44. doi: 10.1111/j.1541-0420.2007.00782.x. Epub 2007 Apr 9.
10
Stochastic model for non-standard case-cohort design.
Stat Med. 2004 Feb 28;23(4):633-47. doi: 10.1002/sim.1610.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验