Wang Pei, Abner Erin L, Liu Changrui, Fardo David W, Schmitt Frederick A, Jicha Gregory A, Van Eldik Linda J, Kryscio Richard J
Department of Statistics, Miami University, Oxford, Ohio.
Department of Epidemiology, University of Kentucky, Lexington, Kentucky.
Stat Neerl. 2023 Aug;77(3):304-321. doi: 10.1111/stan.12286. Epub 2023 Jan 19.
Finite Markov chains with absorbing states are popular tools for analyzing longitudinal data with categorical responses. The one step transition probabilities can be defined in terms of fixed and random effects but it is difficult to estimate these effects due to many unknown parameters. In this article we propose a three-step estimation method. In the first step the fixed effects are estimated by using a marginal likelihood function, in the second step the random effects are estimated after substituting the estimated fixed effects into a joint likelihood function defined as a h-likelihood, and in the third step the covariance matrix for the vector of random effects is estimated using the Hessian matrix for this likelihood function. An application involving an analysis of longitudinal cognitive data is used to illustrate the method.
具有吸收态的有限马尔可夫链是分析具有分类响应的纵向数据的常用工具。一步转移概率可以根据固定效应和随机效应来定义,但由于存在许多未知参数,估计这些效应很困难。在本文中,我们提出了一种三步估计方法。第一步,使用边际似然函数估计固定效应;第二步,将估计出的固定效应代入定义为h-似然的联合似然函数后估计随机效应;第三步,使用该似然函数的海森矩阵估计随机效应向量的协方差矩阵。一个涉及纵向认知数据分析的应用实例用来说明该方法。