Rush Alzheimer's Disease Center, Rush University Medical Center, IL, USA.
Stat Med. 2010 Mar 15;29(6):639-48. doi: 10.1002/sim.3828.
This paper investigates the long-term behavior of the k-step transition probability matrix for a nonstationary discrete-time Markov chain in the context of modeling transitions from intact cognition to dementia with mild cognitive impairment and global impairment as intervening cognitive states. The authors derive formulas for the following absorption statistics: (1) the relative risk of absorption between competing absorbing states and (2) the mean and variance of the number of visits among the transient states before absorption. As absorption is not guaranteed, sufficient conditions are discussed to ensure that the substochastic matrix associated with transitions among transient states converges to zero in limit. Results are illustrated with an application to the Nun Study, a cohort of 678 participants, 75-107 years of age, followed longitudinally with up to 10 cognitive assessments over a 15-year period.
本文研究了非平稳离散时间马尔可夫链在 k 步转移概率矩阵的长期行为,其背景是建模从认知完整到轻度认知障碍和全球认知障碍的转变,其中轻度认知障碍和全球认知障碍是中间认知状态。作者推导出了以下吸收统计量的公式:(1)竞争吸收状态之间的吸收相对风险,(2)吸收前瞬态状态之间的访问次数的均值和方差。由于吸收不一定发生,因此讨论了充分条件,以确保与瞬态状态之间的转换相关联的次随机矩阵在极限下收敛到零。结果通过对 Nun 研究的应用进行说明,该研究是一项队列研究,共 678 名年龄在 75-107 岁的参与者,在 15 年期间进行了多达 10 次认知评估的纵向随访。