Suppr超能文献

MEPO-ML:一种用于快速生成金属有机框架中部分原子电荷的强大图注意力网络模型。

MEPO-ML: a robust graph attention network model for rapid generation of partial atomic charges in metal-organic frameworks.

作者信息

Luo Jun, Said Omar Ben, Xie Peigen, Gibaldi Marco, Burner Jake, Pereira Cécile, Woo Tom K

机构信息

Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie Private, Ottawa, K1N 6N5 Canada.

TotalEnergies OneTech SE, Palaiseau, France.

出版信息

NPJ Comput Mater. 2024;10(1):224. doi: 10.1038/s41524-024-01413-4. Epub 2024 Sep 18.

Abstract

Accurate computation of the gas adsorption properties of MOFs is usually bottlenecked by the DFT calculations required to generate partial atomic charges. Therefore, large virtual screenings of MOFs often use the QEq method which is rapid, but of limited accuracy. Recently, machine learning (ML) models have been trained to generate charges in much better agreement with DFT-derived charges compared to the QEq models. Previous ML charge models for MOFs have all used training sets with less than 3000 MOFs obtained from the CoRE MOF database, which has recently been shown to have high structural error rates. In this work, we developed a graph attention network model for predicting DFT-derived charges in MOFs where the model was developed with the ARC-MOF database that contains 279,632 MOFs and over 40 million charges. This model, which we call , predicts charges with a mean absolute error of 0.025e on our test set of over 27 K MOFs. Other ML models reported in the literature were also trained using the same dataset and descriptors, and MEPO-ML was shown to give the lowest errors. The gas adsorption properties evaluated using MEPO-ML charges are found to be in significantly better agreement with the reference DFT-derived charges compared to the empirical charges, for both polar and non-polar gases. Using only a single CPU core on our benchmark computer, MEPO-ML charges can be generated in less than two seconds on average (including all computations required to apply the model) for MOFs in the test set of 27 K MOFs.

摘要

金属有机框架(MOF)气体吸附特性的精确计算通常因生成部分原子电荷所需的密度泛函理论(DFT)计算而受到限制。因此,MOF的大规模虚拟筛选通常使用快速但精度有限的QEq方法。最近,与QEq模型相比,机器学习(ML)模型经过训练后生成的电荷与DFT衍生电荷的一致性要好得多。以前用于MOF的ML电荷模型都使用了从CoRE MOF数据库获得的少于3000个MOF的训练集,最近已证明该数据库具有较高的结构错误率。在这项工作中,我们开发了一种图注意力网络模型来预测MOF中DFT衍生的电荷,该模型是使用包含279,632个MOF和超过4000万个电荷的ARC-MOF数据库开发的。我们将这个模型称为MEPO-ML,在我们超过27,000个MOF的测试集上,该模型预测电荷的平均绝对误差为0.025e。文献中报道的其他ML模型也使用相同的数据集和描述符进行了训练,结果表明MEPO-ML的误差最低。对于极性和非极性气体,使用MEPO-ML电荷评估的气体吸附特性与参考DFT衍生电荷的一致性明显优于经验电荷。在我们的基准计算机上仅使用一个CPU核心,对于27,000个MOF测试集中的MOF,平均不到两秒即可生成MEPO-ML电荷(包括应用该模型所需的所有计算)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429e/11412901/39e1fdf99a22/41524_2024_1413_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验