Suppr超能文献

用于计算金属有机框架中部分原子电荷的快速准确机器学习策略

Fast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal-Organic Frameworks.

作者信息

Kancharlapalli Srinivasu, Gopalan Arun, Haranczyk Maciej, Snurr Randall Q

机构信息

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.

出版信息

J Chem Theory Comput. 2021 May 11;17(5):3052-3064. doi: 10.1021/acs.jctc.0c01229. Epub 2021 Mar 19.

Abstract

Computational high-throughput screening using molecular simulations is a powerful tool for identifying top-performing metal-organic frameworks (MOFs) for gas storage and separation applications. Accurate partial atomic charges are often required to model the electrostatic interactions between the MOF and the adsorbate, especially when the adsorption involves molecules with dipole or quadrupole moments such as water and CO. Although ab initio methods can be used to calculate accurate partial atomic charges, these methods are impractical for screening large material databases because of the high computational cost. We developed a random forest machine learning model to predict the partial atomic charges in MOFs using a small yet meaningful set of features that represent both the elemental properties and the local environment of each atom. The model was trained and tested on a collection of about 320 000 density-derived electrostatic and chemical (DDEC) atomic charges calculated on a subset of the Computation-Ready Experimental Metal-Organic Framework (CoRE MOF-2019) database and separately on charge model 5 (CM5) charges. The model predicts accurate atomic charges for MOFs at a fraction of the computational cost of periodic density functional theory (DFT) and is found to be transferable to other porous molecular crystals and zeolites. A strong correlation is observed between the partial atomic charge and the average electronegativity difference between the central atom and its bonded neighbors.

摘要

使用分子模拟的计算高通量筛选是一种强大的工具,可用于识别用于气体存储和分离应用的高性能金属有机框架(MOF)。在对MOF与吸附质之间的静电相互作用进行建模时,通常需要准确的部分原子电荷,特别是当吸附涉及具有偶极矩或四极矩的分子(如水和CO)时。尽管可以使用从头算方法来计算准确的部分原子电荷,但由于计算成本高,这些方法对于筛选大型材料数据库来说并不实用。我们开发了一种随机森林机器学习模型,使用一组既代表每个原子的元素特性又代表其局部环境的小而有意义的特征来预测MOF中的部分原子电荷。该模型在计算就绪实验金属有机框架(CoRE MOF - 2019)数据库的一个子集上计算得到的约320000个密度衍生静电和化学(DDEC)原子电荷以及单独在电荷模型5(CM5)电荷上进行了训练和测试。该模型以周期性密度泛函理论(DFT)计算成本的一小部分预测MOF的准确原子电荷,并且发现可转移到其他多孔分子晶体和沸石。在部分原子电荷与中心原子及其键合邻居之间的平均电负性差异之间观察到强相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验