Suppr超能文献

具身计算进化:一种用于研究随机性和形态复杂性进化的模型。

Embodied Computational Evolution: A Model for Investigating Randomness and the Evolution of Morphological Complexity.

作者信息

Aaron E, Long J H

机构信息

Department of Computer Science, Colby College, Waterville, ME 04901, USA.

Interdisciplinary Robotics Research Laboratory, Vassar College, Poughkeepsie, NY 12604, USA.

出版信息

Integr Org Biol. 2024 Aug 21;6(1):obae032. doi: 10.1093/iob/obae032. eCollection 2024.

Abstract

For an integrated understanding of how evolutionary dynamics operate in parallel on multiple levels, computational models can enable investigations that would be otherwise infeasible or impossible. We present one modeling framework, (), and employ it to investigate how two types of randomness-genetic and developmental-drive the evolution of morphological complexity. With these two types of randomness implemented as germline mutation and transcription error, with rates varied in an [Formula: see text] factorial experimental design, we tested two related hypotheses: ( ) Randomness in the gene transcription process alters the direct impact of selection on populations; and ( ) Selection on locomotor performance targets morphological complexity. The experiment consisted of 121 conditions; in each condition, nine starting phenotypic populations developed from different randomly generated genomic populations of 60 individuals. Each of the resulting 1089 phenotypic populations evolved over 100 generations, with the autonomous, self-propelled individuals under directional selection for enhanced locomotor performance. As encoded by their genome, individuals had heritable morphological traits, including the numbers of segments, sensors, neurons, and connections between sensors and motorized joints that they activated. An individual's morphological complexity was measured by three different metrics derived from counts of the body parts. In support of , variations in the rate of randomness in the gene transcription process varied the dynamics of selection. In support of , the morphological complexity of populations evolved adaptively.

摘要

为了全面理解进化动力学如何在多个层面上并行运作,计算模型能够开展一些原本不可行或不可能的研究。我们提出了一个建模框架(),并运用它来研究两种随机性——遗传随机性和发育随机性——如何驱动形态复杂性的进化。通过将这两种随机性分别设定为种系突变和转录错误,并在一个[公式:见正文]析因实验设计中改变其发生率,我们检验了两个相关假设:()基因转录过程中的随机性改变了选择对种群的直接影响;以及()对运动性能的选择以形态复杂性为目标。该实验包含121种条件;在每种条件下,九个起始表型种群由60个个体的不同随机生成基因组种群发育而来。由此产生的1089个表型种群中的每一个都经过了100代的进化,其中自主、自行推进的个体接受定向选择以提高运动性能。个体具有由其基因组编码的可遗传形态特征,包括身体节段数、传感器、神经元以及它们激活的传感器与动力关节之间的连接数。个体的形态复杂性通过从身体部位计数得出的三种不同指标来衡量。为支持假设,基因转录过程中随机性发生率的变化改变了选择的动态。为支持假设,种群的形态复杂性发生了适应性进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f623/11413536/b1d818fde5d9/obae032fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验