Zhu Kaixiang, Song Lili, Wang Linyue, Hua Lei, Luo Ziyu, Wang Tongyun, Qin Bo, Yuan Shuofeng, Gao Xiaopan, Mi Wenyi, Cui Sheng
NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, China.
Acta Pharm Sin B. 2024 Sep;14(9):4164-4173. doi: 10.1016/j.apsb.2024.05.018. Epub 2024 May 22.
Viruses often manipulate ubiquitination pathways to facilitate their replication and pathogenesis. CUL2 known as the substrate receptor of cullin-2 RING E3 ligase, is bound by SARS-CoV-2 ORF10 to increase its E3 ligase activity, leading to degradation of IFT46, a protein component of the intraflagellar transport (IFT) complex B. This results in dysfunctional cilia, which explains certain symptoms that are specific to COVID-19. However, the precise molecular mechanism of how ORF10 recognizes CUL2 remains unknown. Here, we determined the crystal structure of CUL2 complexed with the N-terminal extension (NTE) of SARS-CoV-2 ORF10 (2.9 Å). The structure reveals that the ORF10 N-terminal heptapeptide (NTH) mimics the Gly/N-degron to bind CUL2. Mutagenesis studies identified key residues within ORF10 that are key players in its interaction with CUL2 both in ITC assay and cells. In addition, we prove that enhancement of CUL2 activity for IFT46 degradation by which ORF10-mediated correlates with the binding affinity between ORF10 and CUL2. Finally, we used a Global Protein Stability system to show that the NTH of ORF10 mimics the Gly/N-degron motif, thereby binding competitively to CUL2 and inhibiting the degradation of target substrates bearing the Gly/N-degron motif. Overall, this study sheds light on how SARS-CoV-2 ORF10 exploits the ubiquitination machinery for proteasomal degradation, and offers valuable insights for optimizing PROTAC-based drug design based on NTH CUL2 interaction, while pinpointing a promising target for the development of treatments for COVID-19.
病毒常常操控泛素化途径以促进自身复制和致病过程。CUL2作为cullin-2 RING E3连接酶的底物受体,被严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的ORF10蛋白结合,从而增强其E3连接酶活性,导致鞭毛内运输(IFT)复合体B的一个蛋白质组分IFT46降解。这会导致纤毛功能失调,这就解释了新冠病毒病(COVID-19)的某些特定症状。然而,ORF10识别CUL2的精确分子机制仍不清楚。在此,我们确定了与SARS-CoV-2 ORF10的N端延伸区(NTE)复合的CUL2的晶体结构(2.9埃)。该结构显示,ORF10的N端七肽(NTH)模拟甘氨酸/N端降解子以结合CUL2。诱变研究确定了ORF10内的关键残基,这些残基在等温滴定量热法实验和细胞中都是其与CUL2相互作用的关键参与者。此外,我们证明ORF10介导的对IFT46降解的CUL2活性增强与ORF10和CUL2之间的结合亲和力相关。最后,我们使用全局蛋白质稳定性系统表明,ORF10的NTH模拟甘氨酸/N端降解子基序,从而竞争性结合CUL2并抑制带有甘氨酸/N端降解子基序的靶底物的降解。总体而言,本研究揭示了SARS-CoV-2的ORF10如何利用泛素化机制进行蛋白酶体降解,并为基于NTH与CUL2相互作用优化基于蛋白质降解靶向嵌合体(PROTAC)的药物设计提供了有价值的见解,同时为COVID-19治疗方法的开发指明了一个有前景的靶点。