Suppr超能文献

通过糖基转移酶交换实现庆大霉素的糖基多样化,从而能够创造出具有强效活性和低耳毒性的新型杂合氨基糖苷类抗生素。

Glycodiversification of gentamicins through glycosyltransferase swapping enabled the creation of novel hybrid aminoglycoside antibiotics with potent activity and low ototoxicity.

作者信息

Jian Xinyun, Wang Cheng, Wu Shijuan, Sun Guo, Huang Chuan, Qiu Chengbing, Liu Yuanzheng, Leadlay Peter F, Liu Dong, Deng Zixin, Zhou Fuling, Sun Yuhui

机构信息

Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430071, China.

出版信息

Acta Pharm Sin B. 2024 Sep;14(9):4149-4163. doi: 10.1016/j.apsb.2024.04.030. Epub 2024 May 3.

Abstract

Aminoglycosides (AGs) are a class of antibiotics with a broad spectrum of activity. However, their use is limited by safety concerns associated with nephrotoxicity and ototoxicity, as well as drug resistance. To address these issues, semi-synthetic approaches for modifying natural AGs have generated new generations of AGs, however, with limited types of modification due to significant challenges in synthesis. This study explores a novel approach that harness the bacterial biosynthetic machinery of gentamicins and kanamycins to create hybrid AGs. This was achieved by glycodiversification of gentamicins swapping the glycosyltransferase (GT) in their producer with the GT from kanamycins biosynthetic pathway and resulted in the creation of a series of novel AGs, therefore referred to as genkamicins (GKs). The manipulation of the hybrid biosynthetic pathway enabled the targeted accumulation of different GK species and the isolation and characterization of six GK components. These compounds display retained antimicrobial activity against a panel of World Health Organization (WHO) critical priority pathogens, and GK-C2a, in particular, demonstrates low ototoxicity compared to clinical drugs in zebrafish embryos. This study provides a new strategy for diversifying the structure of AGs and a potential avenue for developing less toxic AG drugs to combat infectious diseases.

摘要

氨基糖苷类抗生素(AGs)是一类具有广泛活性谱的抗生素。然而,它们的使用受到与肾毒性、耳毒性以及耐药性相关的安全问题的限制。为了解决这些问题,对天然AGs进行修饰的半合成方法产生了新一代的AGs,然而,由于合成中存在重大挑战,修饰类型有限。本研究探索了一种利用庆大霉素和卡那霉素的细菌生物合成机制来创建杂交AGs的新方法。这是通过对庆大霉素进行糖基多样化实现的,即将其产生菌中的糖基转移酶(GT)与卡那霉素生物合成途径中的GT进行交换,从而产生了一系列新型AGs,因此称为基因卡那霉素(GK)。对杂交生物合成途径的操作使得不同GK种类能够靶向积累,并分离和鉴定了六种GK成分。这些化合物对一组世界卫生组织(WHO)关键优先病原体保持抗菌活性,特别是GK-C2a,与斑马鱼胚胎中的临床药物相比,显示出低耳毒性。本研究为AGs结构多样化提供了一种新策略,以及开发毒性较低的AG药物以对抗传染病的潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0251/11413697/65f76380ef5e/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验