Kang Yi-Ze, Yao Ying-Kang, Dong Run-Long, Jia Yong-Sheng, Xie Quan-Min, Wang Jian-Ning
State Key Laboratory of Precision Blasting, Jianghan University, Wuhan, 430056, China.
Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan, 430056, China.
Heliyon. 2024 Sep 5;10(18):e37339. doi: 10.1016/j.heliyon.2024.e37339. eCollection 2024 Sep 30.
Monitoring the building blast vibration signal is an efficient way to determine the power of blast vibration hazards. Due to the harsh measurement environment, noise is inevitably introduced into the recorded signals. This research presents a denoising approach based on Improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN) and Composite Multiscale Permutation Entropy (CMPE). First, the noisy blast vibration signal is decomposed into different intrinsic mode functions using ICEEMDAN; then multiple intrinsic mode functions (IMFs) are separated into pure and noisy using CMPE, the noisy IMFs are denoised using wavelet thresholding; finally the blast wave is reconstructed using the pure and denoised mixed IMFs. The proposed approach was compared with four other approaches (CEEMDAN-CMPE, VMD-CMPE, SVMD-CMPE, and WST). The results indicate that the proposed approach has better performance and can be considered as an effective denoising method for building blast vibration signals.
监测建筑物爆炸振动信号是确定爆炸振动危害强度的有效方法。由于测量环境恶劣,记录的信号中不可避免地会引入噪声。本研究提出了一种基于改进的自适应噪声完全总体经验模态分解(ICEEMDAN)和复合多尺度排列熵(CMPE)的去噪方法。首先,利用ICEEMDAN将含噪爆炸振动信号分解为不同的本征模态函数;然后使用CMPE将多个本征模态函数(IMF)分为纯净的和含噪的,对含噪的IMF使用小波阈值法进行去噪;最后,利用纯净的和去噪后的混合IMF重构爆炸波。将所提出的方法与其他四种方法(CEEMDAN-CMPE、VMD-CMPE、SVMD-CMPE和WST)进行了比较。结果表明,所提出的方法具有更好的性能,可被视为一种有效的建筑物爆炸振动信号去噪方法。