Suppr超能文献

一种基于改进的CEEMDAN、归一化互信息和多尺度改进排列熵的船舶辐射噪声特征提取新方法。

A New Feature Extraction Method for Ship-Radiated Noise Based on Improved CEEMDAN, Normalized Mutual Information and Multiscale Improved Permutation Entropy.

作者信息

Chen Zhe, Li Yaan, Cao Renjie, Ali Wasiq, Yu Jing, Liang Hongtao

机构信息

School of Marine Science and technology, Northwestern Polytechnical University, Xi'an 710072, China.

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710072, China.

出版信息

Entropy (Basel). 2019 Jun 25;21(6):624. doi: 10.3390/e21060624.

Abstract

Extracting useful features from ship-radiated noise can improve the performance of passive sonar. The entropy feature is an important supplement to existing technologies for ship classification. However, the existing entropy feature extraction methods for ship-radiated noise are less reliable under noisy conditions because they lack noise reduction procedures or are single-scale based. In order to simultaneously solve these problems, a new feature extraction method is proposed based on improved complementary ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), normalized mutual information (norMI), and multiscale improved permutation entropy (MIPE). Firstly, the ICEEMDAN is utilized to obtain a group of intrinsic mode functions (IMFs) from ship-radiated noise. The noise reduction process is then conducted by identifying and eliminating the noise IMFs. Next, the norMI and MIPE of the signal-dominant IMFs are calculated, respectively; and the norMI is used to weigh the corresponding MIPE result. The multi-scale entropy feature is finally defined as the sum of the weighted MIPE results. Experimental results show that the recognition rate of the proposed method achieves 90.67% and 83%, respectively, under noise free and 5 dB conditions, which is much higher than existing entropy feature extraction algorithms. Hence, the proposed method is more reliable and suitable for feature extraction of ship-radiated noise in practice.

摘要

从舰船辐射噪声中提取有用特征可以提高被动声纳的性能。熵特征是现有舰船分类技术的重要补充。然而,现有的舰船辐射噪声熵特征提取方法在噪声环境下可靠性较低,因为它们缺乏降噪过程或基于单尺度。为了同时解决这些问题,提出了一种基于改进的自适应噪声互补总体经验模态分解(ICEEMDAN)、归一化互信息(norMI)和多尺度改进排列熵(MIPE)的新特征提取方法。首先,利用ICEEMDAN从舰船辐射噪声中获得一组本征模态函数(IMF)。然后通过识别和消除噪声IMF进行降噪处理。接下来,分别计算信号主导IMF的norMI和MIPE;并使用norMI对相应的MIPE结果进行加权。最终将多尺度熵特征定义为加权MIPE结果之和。实验结果表明,该方法在无噪声和5 dB条件下的识别率分别达到90.67%和83%,远高于现有的熵特征提取算法。因此,该方法更可靠,适用于实际舰船辐射噪声的特征提取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98b/7515118/f3291f336acd/entropy-21-00624-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验