Suppr超能文献

WS原子相图案化半导体单层中的瞬态光学共振

Emergent Optical Resonances in Atomically Phase-Patterned Semiconducting Monolayers of WS.

作者信息

Woods John M, Chand Saroj B, Mejia Enrique, Adhikari Ashok, Taniguchi Takashi, Watanabe Kenji, Flick Johannes, Grosso Gabriele

机构信息

Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States.

International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

出版信息

ACS Photonics. 2024 Aug 16;11(9):3784-3793. doi: 10.1021/acsphotonics.4c00983. eCollection 2024 Sep 18.

Abstract

Atomic-scale control of light-matter interactions represents the ultimate frontier for many applications in photonics and quantum technology. Two-dimensional semiconductors, including transition-metal dichalcogenides, are a promising platform to achieve such control due to the combination of an atomically thin geometry and convenient photophysical properties. Here, we demonstrate that a variety of durable polymorphic structures can be combined to generate additional optical resonances beyond the standard excitons. We theoretically predict and experimentally show that atomic-sized patches of the 1T phase within the 1H matrix form unique electronic bands that lead to the emergence of robust optical resonances with strong absorption, circularly polarized emission, and long radiative lifetimes. The atomic manipulation of two-dimensional semiconductors opens unexplored scenarios for light harvesting devices and exciton-based photonics.

摘要

光与物质相互作用的原子尺度控制是光子学和量子技术众多应用的最终前沿。包括过渡金属二硫属化物在内的二维半导体,由于其原子级薄的几何结构和便利的光物理性质相结合,是实现这种控制的一个有前途的平台。在这里,我们证明了多种持久的多晶型结构可以组合起来,以产生超越标准激子的额外光学共振。我们从理论上预测并通过实验表明,1H基质内的1T相原子尺寸斑块形成独特的电子能带,导致出现具有强吸收、圆偏振发射和长辐射寿命的稳健光学共振。二维半导体的原子操纵为光收集器件和基于激子的光子学开辟了未被探索的场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e61/11413843/ec2c9c188a0a/ph4c00983_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验