Suppr超能文献

人类微生物组的系统生物学预测个人血糖反应。

Systems Biology of Human Microbiome for the Prediction of Personal Glycaemic Response.

机构信息

School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.

Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea.

出版信息

Diabetes Metab J. 2024 Sep;48(5):821-836. doi: 10.4093/dmj.2024.0382. Epub 2024 Sep 1.

Abstract

The human gut microbiota is increasingly recognized as a pivotal factor in diabetes management, playing a significant role in the body's response to treatment. However, it is important to understand that long-term usage of medicines like metformin and other diabetic treatments can result in problems, gastrointestinal discomfort, and dysbiosis of the gut flora. Advanced sequencing technologies have improved our understanding of the gut microbiome's role in diabetes, uncovering complex interactions between microbial composition and metabolic health. We explore how the gut microbiota affects glucose metabolism and insulin sensitivity by examining a variety of -omics data, including genomics, transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Machine learning algorithms and genome-scale modeling are now being applied to find microbiological biomarkers associated with diabetes risk, predicted disease progression, and guide customized therapy. This study holds promise for specialized diabetic therapy. Despite significant advances, some concerns remain unanswered, including understanding the complex relationship between diabetes etiology and gut microbiota, as well as developing user-friendly technological innovations. This mini-review explores the relationship between multiomics, precision medicine, and machine learning to improve our understanding of the gut microbiome's function in diabetes. In the era of precision medicine, the ultimate goal is to improve patient outcomes through personalized treatments.

摘要

人类肠道微生物群越来越被认为是糖尿病管理的关键因素,在人体对治疗的反应中起着重要作用。然而,需要了解的是,长期使用二甲双胍和其他糖尿病治疗药物可能会导致问题、胃肠道不适和肠道菌群失调。先进的测序技术提高了我们对肠道微生物群在糖尿病中的作用的理解,揭示了微生物组成与代谢健康之间的复杂相互作用。我们通过检查各种组学数据,包括基因组学、转录组学、表观基因组学、蛋白质组学、代谢组学和宏基因组学,来研究肠道微生物群如何影响葡萄糖代谢和胰岛素敏感性。机器学习算法和基因组规模建模现在被应用于寻找与糖尿病风险、预测疾病进展相关的微生物学标志物,并指导定制治疗。这项研究有望为糖尿病的专门治疗提供帮助。尽管取得了重大进展,但仍有一些问题尚未得到解答,包括了解糖尿病病因和肠道微生物群之间的复杂关系,以及开发用户友好的技术创新。本综述探讨了多组学、精准医学和机器学习之间的关系,以提高我们对肠道微生物群在糖尿病中的功能的理解。在精准医学时代,最终目标是通过个性化治疗改善患者的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/160e/11449821/112a9a613365/dmj-2024-0382f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验