Institute of Health Data Analytics & Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan.
Health Data Research Center, National Taiwan University, Taipei, Taiwan.
Res Synth Methods. 2024 Nov;15(6):1175-1182. doi: 10.1002/jrsm.1760. Epub 2024 Sep 23.
Network meta-analysis (NMA) incorporates all available evidence into a general statistical framework for comparing multiple treatments. Standard NMAs make three major assumptions, namely homogeneity, similarity, and consistency, and violating these assumptions threatens an NMA's validity. In this article, we suggest a graphical approach to assessing these assumptions and distinguishing between qualitative and quantitative versions of these assumptions. In our plot, the absolute effect of each treatment arm is plotted against the level of effect modifiers, and the three assumptions of NMA can then be visually evaluated. We use four hypothetical scenarios to show how violating these assumptions can lead to different consequences and difficulties in interpreting an NMA. We present an example of an NMA evaluating steroid use to treat septic shock patients to demonstrate how to use our graphical approach to assess an NMA's assumptions and how this approach can help with interpreting the results. We also show that all three assumptions of NMA can be summarized as an exchangeability assumption. Finally, we discuss how reporting of NMAs can be improved to increase transparency of the analysis and interpretability of the results.
网络荟萃分析(NMA)将所有可用证据纳入一个通用的统计框架,用于比较多种治疗方法。标准的 NMA 有三个主要假设,即同质性、相似性和一致性,违反这些假设会威胁到 NMA 的有效性。在本文中,我们建议使用图形方法来评估这些假设,并区分这些假设的定性和定量版本。在我们的图中,每个治疗组的绝对效果与效应修饰因子的水平相对应,然后可以直观地评估 NMA 的三个假设。我们使用四个假设场景来说明违反这些假设如何导致对 NMA 的不同解释和解读困难。我们提供了一个评估类固醇治疗感染性休克患者的 NMA 示例,以演示如何使用我们的图形方法来评估 NMA 的假设,以及该方法如何帮助解释结果。我们还表明,NMA 的所有三个假设都可以概括为可交换性假设。最后,我们讨论了如何改进 NMA 的报告,以提高分析的透明度和结果的可解读性。