Suppr超能文献

高分辨率功能磁共振成像中的模糊波纹伪影:识别、成因及缓解措施

Fuzzy ripple artifact in high resolution fMRI: identification, cause, and mitigation.

作者信息

Huber Renzo, Stirnberg Rüdiger, Morgan A Tyler, Feinberg David A, Ehses Philipp, Knudsen Lasse, Gulban Omer Faruk, Koiso Kenshu, Swegle Stephanie, Gephart Isabel, Wardle Susan G, Persichetti Andrew, Beckett Alexander Js, Stöcker Tony, Boulant Nicolas, Poser Benedikt A, Bandettini Peter

机构信息

NIMH, NIH, Bethesda, United States.

German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.

出版信息

bioRxiv. 2024 Sep 9:2024.09.04.611294. doi: 10.1101/2024.09.04.611294.

Abstract

PURPOSE

High resolution fMRI is a rapidly growing research field focused on capturing functional signal changes across cortical layers. However, the data acquisition is limited by low spatial frequency EPI artifacts; termed here as Fuzzy Ripples. These artifacts limit the practical applicability of acquisition protocols with higher spatial resolution, faster acquisition speed, and they challenge imaging in lower brain areas.

METHODS

We characterize Fuzzy Ripple artifacts across commonly used sequences and distinguish them from conventional EPI Nyquist ghosts, off-resonance effects, and GRAPPA artifacts. To investigate their origin, we employ dual polarity readouts.

RESULTS

Our findings indicate that Fuzzy Ripples are primarily caused by readout-specific imperfections in k-space trajectories, which can be exacerbated by inductive coupling between third-order shims and readout gradients. We also find that these artifacts can be mitigated through complex-valued averaging of dual polarity EPI or by disconnecting the third-order shim coils.

CONCLUSION

The proposed mitigation strategies allow overcoming current limitations in layer-fMRI protocols: (1)Achieving resolutions beyond 0.8mm is feasible, and even at 3T, we achieved 0.53mm voxel functional connectivity mapping.(2)Sub-millimeter sampling acceleration can be increased to allow sub-second TRs and laminar whole brain protocols with up to GRAPPA 8.(3)Sub-millimeter fMRI is achievable in lower brain areas, including the cerebellum.

摘要

目的

高分辨率功能磁共振成像(fMRI)是一个快速发展的研究领域,专注于捕捉跨皮质层的功能信号变化。然而,数据采集受到低空间频率回波平面成像(EPI)伪影的限制;在此称为模糊波纹。这些伪影限制了具有更高空间分辨率、更快采集速度的采集协议的实际适用性,并且对较低脑区的成像提出了挑战。

方法

我们对常用序列中的模糊波纹伪影进行了表征,并将它们与传统的EPI奈奎斯特鬼影、失谐效应和GRAPPA伪影区分开来。为了研究它们的起源,我们采用了双极性读出。

结果

我们的研究结果表明,模糊波纹主要由k空间轨迹中特定于读出的缺陷引起,三阶匀场线圈与读出梯度之间的电感耦合会加剧这种缺陷。我们还发现,这些伪影可以通过双极性EPI的复数值平均或断开三阶匀场线圈来减轻。

结论

所提出的减轻策略能够克服当前层fMRI协议中的限制:(1)实现超过0.8毫米的分辨率是可行的,即使在3T时,我们也实现了0.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b0/11418939/6d26d08420da/nihpp-2024.09.04.611294v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验