Suppr超能文献

CTLESS:一种用于心肌灌注单光子发射计算机断层扫描的基于散射窗口投影和深度学习的无传输衰减补偿方法。

CTLESS: A scatter-window projection and deep learning-based transmission-less attenuation compensation method for myocardial perfusion SPECT.

作者信息

Yu Zitong, Rahman Md Ashequr, Abbey Craig K, Laforest Richard, Obuchowski Nancy A, Siegel Barry A, Jha Abhinav K

出版信息

ArXiv. 2024 Sep 12:arXiv:2409.07761v1.

Abstract

Attenuation compensation (AC), while being beneficial for visual-interpretation tasks in myocardial perfusion imaging (MPI) by SPECT, typically requires the availability of a separate X-ray CT component, leading to additional radiation dose, higher costs, and potentially inaccurate diagnosis due to SPECT/CT misalignment. To address these issues, we developed a method for cardiac SPECT AC using deep learning and emission scatter-window photons without a separate transmission scan (CTLESS). In this method, an estimated attenuation map reconstructed from scatter-energy window projections is segmented into different regions using a multi-channel input multi-decoder network trained on CT scans. Pre-defined attenuation coefficients are assigned to these regions, yielding the attenuation map used for AC. We objectively evaluated this method in a retrospective study with anonymized clinical SPECT/CT stress MPI images on the clinical task of detecting defects with an anthropomorphic model observer. CTLESS yielded statistically non-inferior performance compared to a CT-based AC (CTAC) method and significantly outperformed a non-AC (NAC) method on this clinical task. Similar results were observed in stratified analyses with different sexes, defect extents and severities. The method was observed to generalize across two SPECT scanners, each with a different camera. In addition, CTLESS yielded similar performance as CTAC and outperformed NAC method on the metrics of root mean squared error and structural similarity index measure. Moreover, as we reduced the training dataset size, CTLESS yielded relatively stable AUC values and generally outperformed another DL-based AC method that directly estimated the attenuation coefficient within each voxel. These results demonstrate the capability of the CTLESS method for transmission-less AC in SPECT and motivate further clinical evaluation.

摘要

衰减补偿(AC)虽然有利于单光子发射计算机断层扫描(SPECT)心肌灌注成像(MPI)中的视觉解读任务,但通常需要单独的X射线计算机断层扫描(CT)组件,这会导致额外的辐射剂量、更高的成本,并且由于SPECT/CT对准不良可能导致诊断不准确。为了解决这些问题,我们开发了一种用于心脏SPECT AC的方法,该方法使用深度学习和发射散射窗光子,无需单独的透射扫描(无CT)。在该方法中,从散射能量窗投影重建的估计衰减图使用在CT扫描上训练的多通道输入多解码器网络被分割成不同区域。预定义的衰减系数被分配给这些区域,从而生成用于AC的衰减图。我们在一项回顾性研究中,使用具有拟人模型观察者的匿名临床SPECT/CT负荷MPI图像,对检测缺陷的临床任务客观地评估了该方法。与基于CT的AC(CTAC)方法相比,无CT在统计学上具有非劣效性能,并且在该临床任务上显著优于非AC(NAC)方法。在不同性别、缺陷范围和严重程度的分层分析中观察到了类似结果。该方法在两台不同相机的SPECT扫描仪上均能通用。此外,在均方根误差和结构相似性指数测量指标上,无CT与CTAC具有相似性能且优于NAC方法。此外,随着我们减少训练数据集的大小,无CT产生相对稳定的曲线下面积(AUC)值,并且通常优于另一种直接估计每个体素内衰减系数的基于深度学习的AC方法。这些结果证明了无CT方法在SPECT中进行无透射AC的能力,并激发了进一步的临床评估。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验