Suppr超能文献

应用于差分动态显微镜的卷积神经网络在量化异质动力学时可降低噪声。

Convolutional neural networks applied to differential dynamic microscopy reduces noise when quantifying heterogeneous dynamics.

作者信息

Martinez Gildardo, Siu Justin, Dang Steven, Gage Dylan, Kao Emma, Avila Juan Carlos, You Ruilin, McGorty Ryan

机构信息

Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.

出版信息

Soft Matter. 2024 Oct 9;20(39):7880-7890. doi: 10.1039/d4sm00881b.

Abstract

Differential dynamic microscopy (DDM) typically relies on movies containing hundreds or thousands of frames to accurately quantify motion in soft matter systems. Using movies much shorter in duration produces noisier and less accurate results. This limits the applicability of DDM to situations where the dynamics are stationary over extended times. Here, we investigate a method to denoise the DDM process, particularly suited to when a limited number of imaging frames are available or when dynamics are quickly evolving in time. We use a convolutional neural network encoder-decoder (CNN-ED) model to reduce the noise in the intermediate scattering function that is computed DDM. We demonstrate this approach of combining machine learning and DDM on samples containing diffusing micron-sized colloidal particles. We quantify how the particles' diffusivities change over time as the fluid they are suspended in gels. We also quantify how the diffusivity of particles varies with position in a sample containing a viscosity gradient. These test cases demonstrate how studies of non-equilibrium dynamics and high-throughput screens could benefit from a method to denoise the outputs of DDM.

摘要

微分动态显微镜(DDM)通常依赖于包含数百或数千帧的影片,以准确量化软物质系统中的运动。使用持续时间短得多的影片会产生噪声更大且准确性更低的结果。这限制了DDM在动力学在较长时间内保持稳定的情况下的适用性。在此,我们研究一种对DDM过程进行去噪的方法,该方法特别适用于成像帧数有限或动力学随时间快速变化的情况。我们使用卷积神经网络编码器-解码器(CNN-ED)模型来降低在DDM中计算的中间散射函数中的噪声。我们在包含扩散的微米级胶体颗粒的样品上展示了这种将机器学习与DDM相结合的方法。我们量化了随着颗粒悬浮其中的流体发生凝胶化,颗粒的扩散率如何随时间变化。我们还量化了在包含粘度梯度的样品中,颗粒的扩散率如何随位置变化。这些测试案例展示了非平衡动力学研究和高通量筛选如何能够从一种对DDM输出进行去噪的方法中受益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验