文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于下一代磁性应用的气相合成M(铁、钴和镍)-铬纳米颗粒中的铁磁-反铁磁耦合

Ferromagnetic-Antiferromagnetic Coupling in Gas-Phase Synthesized M(Fe, Co, and Ni)-Cr Nanoparticles for Next-Generation Magnetic Applications.

作者信息

Bohra Murtaza, Giaremis Stefanos, Ks Abisegapriyan, Mathioudaki Stella, Kioseoglou Joseph, Grammatikopoulos Panagiotis

机构信息

Physics Department, School of Engineering, Mahindra University, Survey Number 62/1A, Bahadurpally Jeedimetla, Hyderabad, Telangana, 500043, India.

School of Physics, Department of Condensed Matter and Materials Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.

出版信息

Adv Sci (Weinh). 2024 Nov;11(43):e2403708. doi: 10.1002/advs.202403708. Epub 2024 Sep 24.


DOI:10.1002/advs.202403708
PMID:39316368
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11892505/
Abstract

Combining ferromagnetic-antiferromagnetic materials in nanoalloys (i.e., nanoparticles, NPs, containing more than one element) can create a diverse landscape of potential electronic structures. As a result, a number of their magnetic properties can be manipulated, such as the exchange bias between NP core and shell, the Curie temperature of nanoparticulated samples, or their magnetocaloric effect. In this work, such a family of materials (namely M-Cr NPs where M is Fe, Co, Ni, or some combination of them) is reviewed with respect to the tunability of their magnetic properties via optimized doping with Cr up to its solubility limit. To this end, gas-phase synthesis has proven a most effective method, allowing excellent control over the physical structure, composition, and chemical ordering of fabricated NPs by appropriately selecting various deposition parameters. Recent advances in this field (both experimental and computational) are distilled to provide a better understanding of the underlying physical laws and point toward new directions for cutting-edge technological applications. For each property, a relevant potential application is associated, such as memory cells and recording heads, induced hyperthermia treatment, and magnetic cooling, respectively, aspiring to help connect the output of fundamental and applied research with current real-world challenges.

摘要

在纳米合金(即包含不止一种元素的纳米颗粒,NPs)中结合铁磁 - 反铁磁材料可以创造出多种多样潜在的电子结构。因此,它们的许多磁性能可以被调控,比如NP核与壳之间的交换偏置、纳米颗粒样品的居里温度或它们的磁热效应。在这项工作中,针对这类材料(即M - Cr NPs,其中M为Fe、Co、Ni或它们的某种组合)通过将Cr掺杂至其溶解度极限进行优化来调控其磁性能的情况进行了综述。为此,气相合成已被证明是一种最有效的方法,通过适当选择各种沉积参数,可以对制备的NPs的物理结构、组成和化学有序性进行出色的控制。该领域(包括实验和计算方面)的最新进展被提炼出来,以更好地理解潜在的物理规律,并为前沿技术应用指明新方向。对于每种性能,都关联了一个相关的潜在应用,例如分别用于记忆单元和记录头、诱导热疗以及磁冷却,旨在帮助将基础研究和应用研究的成果与当前现实世界的挑战联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/a7a52879fb69/ADVS-11-2403708-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/3cbf9b28b934/ADVS-11-2403708-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/5fd483c30d8b/ADVS-11-2403708-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/e4374bfd86b1/ADVS-11-2403708-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/c2a7ed9fa1de/ADVS-11-2403708-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/97b7ac3c6cdd/ADVS-11-2403708-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/5dd78a1e2194/ADVS-11-2403708-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/f5fd9f8bf9de/ADVS-11-2403708-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/354d3cbddcd9/ADVS-11-2403708-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/78557dec34d7/ADVS-11-2403708-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/d30058a6066f/ADVS-11-2403708-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/deca38b0ec50/ADVS-11-2403708-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/18030c12b54e/ADVS-11-2403708-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/f47f93ffee38/ADVS-11-2403708-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/49ea3de6ed19/ADVS-11-2403708-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/a7a52879fb69/ADVS-11-2403708-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/3cbf9b28b934/ADVS-11-2403708-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/5fd483c30d8b/ADVS-11-2403708-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/e4374bfd86b1/ADVS-11-2403708-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/c2a7ed9fa1de/ADVS-11-2403708-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/97b7ac3c6cdd/ADVS-11-2403708-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/5dd78a1e2194/ADVS-11-2403708-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/f5fd9f8bf9de/ADVS-11-2403708-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/354d3cbddcd9/ADVS-11-2403708-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/78557dec34d7/ADVS-11-2403708-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/d30058a6066f/ADVS-11-2403708-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/deca38b0ec50/ADVS-11-2403708-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/18030c12b54e/ADVS-11-2403708-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/f47f93ffee38/ADVS-11-2403708-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/49ea3de6ed19/ADVS-11-2403708-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e6/11892505/a7a52879fb69/ADVS-11-2403708-g018.jpg

相似文献

[1]
Ferromagnetic-Antiferromagnetic Coupling in Gas-Phase Synthesized M(Fe, Co, and Ni)-Cr Nanoparticles for Next-Generation Magnetic Applications.

Adv Sci (Weinh). 2024-11

[2]
High-nuclearity metal-cyanide clusters: synthesis, magnetic properties, and inclusion behavior of open-cage species incorporating [(tach)M(CN)3] (M = Cr, Fe, Co) complexes.

Inorg Chem. 2003-3-10

[3]
Magnetic couplings and magnetocaloric effect in the GdTX (T=Sc, Ti, Co, Fe; X=Si, Ge) compounds.

J Phys Condens Matter. 2020-7-1

[4]
Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal.

Nanoscale. 2013-9-7

[5]
3d Metal Doping of Core@Shell Wüstite@ferrite Nanoparticles as a Promising Route toward Room Temperature Exchange Bias Magnets.

Small. 2022-4

[6]
Structure and magnetism in Cr-embedded Co nanoparticles.

J Phys Condens Matter. 2016-2-3

[7]
Magnetic homogeneity in Fe-Mn co-doped NiO nanoparticles.

Nanotechnology. 2020-11-20

[8]
Composition dependence of magnetocaloric effect in Pr0.6Ca0.4Mn(1-x)Cr(x)O3 (x = 0.02-0.08).

J Nanosci Nanotechnol. 2012-1

[9]
Room-temperature ferromagnetism in Ni(ii)-chromia based core-shell nanoparticles: experiment and first principles calculations.

Phys Chem Chem Phys. 2018-4-18

[10]
Structure and Magnetic Properties of ErFeMn (7.0 ≤ x ≤ 9.0, Δx = 0.2).

Nanomaterials (Basel). 2022-5-7

引用本文的文献

[1]
Nickel nanoparticles: a novel platform for cancer-targeted delivery and multimodal therapy.

Front Drug Deliv. 2025-7-30

本文引用的文献

[1]
Adjusting surface coverage of Pt nanocatalyst decoration for selectivity control in CMOS-integrated SnO thin film gas sensors.

Nanoscale Adv. 2024-1-15

[2]
Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications.

Nat Protoc. 2023-3

[3]
Gas-phase synthesis of nanoparticles: current application challenges and instrumentation development responses.

Phys Chem Chem Phys. 2023-1-4

[4]
On the melting point depression, coalescence, and chemical ordering of bimetallic nanoparticles: the miscible Ni-Pt system.

Nanoscale Adv. 2022-10-20

[5]
Magnetic cooling: a molecular perspective.

Dalton Trans. 2022-8-30

[6]
Gas Phase Synthesis of Multi-Element Nanoparticles.

Nanomaterials (Basel). 2021-10-22

[7]
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.

Chem Soc Rev. 2021-10-18

[8]
Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications.

Nanoscale. 2021-8-28

[9]
Magnetic-Field Directed Vapor-Phase Assembly of Low Fractal Dimension Metal Nanostructures: Experiment and Theory.

J Phys Chem Lett. 2021-4-29

[10]
Aggregation vs Surface Segregation: Antagonism over the Magnetic Behavior of NiCr Nanoparticles.

ACS Omega. 2020-12-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索