Gavilán Helena, Avugadda Sahitya Kumar, Fernández-Cabada Tamara, Soni Nisarg, Cassani Marco, Mai Binh T, Chantrell Roy, Pellegrino Teresa
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
Department of Physics, University of York, York YO10 5DD, UK.
Chem Soc Rev. 2021 Oct 18;50(20):11614-11667. doi: 10.1039/d1cs00427a.
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
磁热疗(MHT)是一种用于治疗实体瘤的治疗方式,目前已有30多年的经验积累。在正在进行的用于治疗脑肿瘤和前列腺肿瘤的MHT临床试验中,氧化铁纳米颗粒在患者安全的100 kHz交变磁场(AMF)施加器下用作肿瘤内MHT剂。尽管氧化铁纳米颗粒目前已获美国食品药品监督管理局(FDA)批准用于成像目的和治疗贫血,但专为高效MHT治疗设计的磁性纳米颗粒(MNP)必须在磁能转换、热剂量产生、表面化学和聚集状态方面具备特定的物理化学性质。因此,在过去几十年中,这些要求推动了专门用于MHT的新一代MNP的开发。在本综述中,我们概述了通过不同合成路线制备的MNP及其组装体,重点关注哪些MNP特性能够在MHT中实现前所未有的加热效率水平,并突出那些能够防止细胞内环境中磁热损失的纳米平台。此外,我们回顾了基于MNP的纳米平台在多模态治疗概念方面的进展,该概念旨在将MHT与化疗、放疗、免疫治疗、光动力或光疗相结合。接下来,为了更好地控制肿瘤部位的治疗温度,我们重点关注那些优化了MNP以保持金标准MHT性能并且还在解决MNP成像问题的研究,目的是定量评估在肿瘤部位积累的纳米颗粒数量并调节MHT场条件。最后,将提供关于如何推进MHT治疗的未来展望。