Suppr超能文献

基于多中心数据的胃肝样腺癌分期系统的开发:一项回顾性队列研究

Development of a staging system for hepatoid adenocarcinoma of the stomach based on multicenter data: a retrospective cohort study.

作者信息

Huang Ying-Qi, Huang Ze-Ning, Hong Qing-Qi, Zhang Peng, Zhang Zi-Zhen, He Liang, Shang Liang, Wang Lin-Jun, Sun Ya-Feng, Li Zhi-Xiong, Liu Jun-Jie, Ding Fang-Hui, Lin En-De, Fu Yong-An, Lin Shuang-Ming, Chen Qi-Yue, Zheng Chao-Hui, Huang Chang-Ming, Li Ping

机构信息

Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.

Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, People's Republic of China.

出版信息

Int J Surg. 2025 Jan 1;111(1):718-727. doi: 10.1097/JS9.0000000000001768.

Abstract

BACKGROUND

Hepatoid adenocarcinoma of the stomach (HAS) is a rare subtype of gastric cancer (GC) with a poor prognosis. Furthermore, the current pathological staging system for HAS does not distinguish it from that for common gastric cancer (CGC).

METHODS

The clinicopathological data of 251 patients with primary HAS who underwent radical surgery at 14 centers in China from April 2004 to December 2019 and 5082 patients with primary CGC who underwent radical surgery at two centers during the same period were retrospectively analyzed. A modified staging system was established based on the differences in survival.

RESULTS

After 1:4 propensity score matching (PSM), 228 patients with HAS and 828 patients with CGC were analyzed. Kaplan-Meier (K-M) analysis showed patients with HAS had a poorer prognosis compared with CGC. Multivariate analysis identified pN stage, CEA level, and perineural invasion (PNI) as independent prognostic factors in patients with HAS. A modified pT (mpT) staging was derived using recursive partitioning analysis (RPA) incorporating PNI and pT staging. The modified pathological staging system (mpTNM) integrated the mpT and the eighth American Joint Committee on Cancer (AJCC) pN definitions. Multivariate analysis showed that the mpTNM stage outperformed other pathological variables as independent predictors of OS and RFS in patients with HAS. The mpTNM staging system exhibited significantly higher predictive accuracy for 3-year OS in patients with HAS (0.707, 95% CI: 0.650-0.763) compared to that of the eighth AJCC staging system (0.667, 95% CI: 0.610-0.723, P <0.05). Analysis using the Akaike information criterion favored the mpTNM staging system over the eighth AJCC staging system (824.69 vs. 835.94) regarding the goodness of fit. The mpTNM stages showed improved homogeneity in survival prediction (likelihood ratio: 41.51 vs. 27.10). Comparatively, the mpTNM staging system outperformed the eighth AJCC staging system in survival prediction, supported by improvements in the net reclassification index (NRI: 47.7%) and integrated discrimination improvement (IDI: 0.083, P <0.05). The time-dependent ROC curve showed that the mpTNM staging system consistently outperformed the eighth AJCC staging system with increasing observation time.

CONCLUSION

The mpTNM staging system exhibited superior postoperative prognostic accuracy for patients with HAS compared to the eighth AJCC staging system.

摘要

背景

胃肝样腺癌(HAS)是胃癌(GC)的一种罕见亚型,预后较差。此外,目前HAS的病理分期系统并未将其与普通胃癌(CGC)区分开来。

方法

回顾性分析2004年4月至2019年12月在中国14个中心接受根治性手术的251例原发性HAS患者以及同期在两个中心接受根治性手术的5082例原发性CGC患者的临床病理资料。基于生存差异建立了改良分期系统。

结果

经过1:4倾向评分匹配(PSM)后,分析了228例HAS患者和828例CGC患者。Kaplan-Meier(K-M)分析显示,与CGC相比,HAS患者的预后较差。多因素分析确定pN分期、癌胚抗原(CEA)水平和神经侵犯(PNI)为HAS患者的独立预后因素。使用递归划分分析(RPA)结合PNI和pT分期得出改良的pT(mpT)分期。改良病理分期系统(mpTNM)整合了mpT和美国癌症联合委员会(AJCC)第八版的pN定义。多因素分析表明,在HAS患者中,mpTNM分期作为总生存期(OS)和无复发生存期(RFS)的独立预测指标优于其他病理变量。与AJCC第八版分期系统相比,mpTNM分期系统对HAS患者3年OS的预测准确性显著更高(0.707,95%置信区间:0.650-0.763)(0.667,95%置信区间:0.610-0.723,P<0.05)。使用赤池信息准则进行分析,就拟合优度而言,mpTNM分期系统优于AJCC第八版分期系统(824.69对835.94)。mpTNM分期在生存预测中的同质性有所改善(似然比:41.51对27.10)。相比之下,mpTNM分期系统在生存预测方面优于AJCC第八版分期系统,并在净重新分类指数(NRI:47.7%)和综合判别改善(IDI:0.083,P<0.05)方面得到改善。时间依赖性ROC曲线显示,随着观察时间的增加,mpTNM分期系统始终优于AJCC第八版分期系统。

结论

与AJCC第八版分期系统相比,mpTNM分期系统对HAS患者术后预后的预测准确性更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac2c/11745678/e9addbeb1fc7/js9-111-0718-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验