Suppr超能文献

提出并验证了一种改良的分期系统,以提高第 8 版 AJCC/UICC pTNM 分期系统对胃腺癌预后预测性能:一项多中心研究及外部验证。

Proposal and validation of a modified staging system to improve the prognosis predictive performance of the 8th AJCC/UICC pTNM staging system for gastric adenocarcinoma: a multicenter study with external validation.

机构信息

Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, P. R. China.

Department of Gastric Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300000, P. R. China.

出版信息

Cancer Commun (Lond). 2018 Nov 19;38(1):67. doi: 10.1186/s40880-018-0337-5.

Abstract

BACKGROUND

The 8th edition of the American Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) pathological tumor-node-metastasis (pTNM) staging system may have increased accuracy in predicting prognosis of gastric cancer due to its important modifications from previous editions. However, the homogeneity in prognosis within each subgroup classified according to the 8th edition may still exist. This study aimed to compare and analyze the prognosis prediction abilities of the 8th and 7th editions of AJCC/UICC pTNM staging system for gastric cancer and propose a modified pTNM staging system with external validation.

METHODS

In total, clinical data of 7911 patients from three high-capacity institutions in China and 10,208 cases from the Surveillance, Epidemiology, and End Results (SEER) Program Registry were analyzed. The homogeneity, discriminatory ability, and monotonicity of the gradient assessments of the 8th and 7th editions of AJCC/UICC pTNM staging system were compared using log-rank χ, linear-trend χ, likelihood-ratio χ statistics and Akaike information criterion (AIC) calculations, on which a modified pTNM classification with external validation using the SEER database was proposed.

RESULTS

Considerable stage migration, mainly for stage III, between the 8th and 7th editions was observed in both cohorts. The survival rates of subgroups of patients within stage IIIA, IIIB, or IIIC classified according to both editions were significantly different, demonstrating poor homogeneity for patient stratification. A modified pTNM staging system using data from the Chinese cohort was then formulated and demonstrated an improved homogeneity in these abovementioned subgroups. This staging system was further validated using data from the SEER cohort, and similar promising results were obtained. Compared with the 8th and 7th editions, the modified pTNM staging system displayed the highest log-rank χ, linear-trend χ, likelihood-ratio χ, and lowest AIC values, indicating its superior discriminatory ability, monotonicity, homogeneity and prognosis prediction ability in both populations.

CONCLUSIONS

The 8th edition of AJCC/UICC pTNM staging system is superior to the 7th edition, but still results in homogeneity in prognosis prediction. Our modified pTNM staging system demonstrated the optimal stratification and prognosis prediction ability in two large cohorts of different gastric cancer populations.

摘要

背景

第八版美国癌症联合委员会/国际癌症控制联盟(AJCC/UICC)病理肿瘤-淋巴结-转移(pTNM)分期系统可能通过对前几版的重要修改,提高了预测胃癌预后的准确性。然而,根据第八版分类的每个亚组内的预后一致性仍然存在。本研究旨在比较和分析第八版和第七版 AJCC/UICC pTNM 分期系统对胃癌的预后预测能力,并提出一种具有外部验证的改良 pTNM 分期系统。

方法

本研究共分析了来自中国三家大容量医疗机构的 7911 例患者和 SEER 数据库中的 10208 例患者的临床资料。使用对数秩 χ²、线性趋势 χ²、似然比 χ²统计和 Akaike 信息准则(AIC)计算,比较第八版和第七版 AJCC/UICC pTNM 分期系统的梯度评估的同质性、区分能力和单调性,在此基础上提出了一种基于 SEER 数据库的改良 pTNM 分类,并进行了外部验证。

结果

在两个队列中,都观察到第八版和第七版之间的主要是 III 期的分期迁移。根据两个版本分类的 IIIA、IIIB 或 IIIC 期亚组患者的生存率有显著差异,表明患者分层的同质性较差。然后,使用中国队列的数据制定了一种改良的 pTNM 分期系统,并证明了上述亚组的同质性得到了改善。该分期系统进一步使用 SEER 队列的数据进行验证,得到了类似的有前景的结果。与第八版和第七版相比,改良的 pTNM 分期系统的对数秩 χ²、线性趋势 χ²、似然比 χ²和最低 AIC 值更高,表明其在两个人群中的区分能力、单调性、同质性和预后预测能力更高。

结论

第八版 AJCC/UICC pTNM 分期系统优于第七版,但仍存在预后预测的同质性问题。我们的改良 pTNM 分期系统在两个不同胃癌人群的大型队列中表现出了最佳的分层和预后预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9002/6245913/308deba5bde8/40880_2018_337_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验