Cheng Mingyu, Wang Shao, Dai Zechuan, Xia Jing, Zhang Bocheng, Feng Pingyi, Zhu Yin, Zhang Yangyang, Zhang Genqiang
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, P R. China.
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, 100190, Beijing, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413534. doi: 10.1002/anie.202413534. Epub 2024 Nov 6.
Electrocatalytic C-N coupling for urea synthesis from carbon dioxide (CO) and nitrate (NO ) offers a sustainable alternative to the traditional Bosch-Meiser method. However, the complexity of intermediates in co-reduction hampers simultaneous improvement in urea yield and Faradaic efficiency (FE). Herein, we developed a Cu/CuO Mott-Schottky catalyst with nanoscale rectifying heterointerfaces through precise controllable in situ electroreduction of CuO nanowires, achieving notable FE (32.6-47.0 %) and substantial yields (6.08-30.4 μmol h cm) across a broad range of ultralow applied potentials (0 to -0.3 V vs. RHE). Operando synchrotron radiation-Fourier transform infrared spectroscopy (SR-FTIR) confirmed the formation of *CO intermediates and C-N bonds, subsequently density functional theory (DFT) calculations deciphered that the Cu/CuO rectifying heterointerface modulated *CO adsorption, significantly enhancing subsequent C-N coupling dynamics between *CO and *NOH intermediates. This work not only provides a groundbreaking and advanced pathway for C-N coupling, but also offers deep insights into copper-based heterointerface catalysts for urea synthesis.
用于从二氧化碳(CO₂)和硝酸盐(NO₃⁻)合成尿素的电催化C-N偶联为传统的博施法-迈泽尔法提供了一种可持续的替代方法。然而,共还原过程中中间体的复杂性阻碍了尿素产率和法拉第效率(FE)的同时提高。在此,我们通过对CuO纳米线进行精确可控的原位电还原,开发了一种具有纳米级整流异质界面的Cu/CuO莫特-肖特基催化剂,在很宽的超低施加电位范围(相对于可逆氢电极,0至-0.3 V)内实现了显著的FE(32.6-47.0%)和可观的产率(6.08-30.4 μmol h⁻¹ cm⁻²)。原位同步辐射傅里叶变换红外光谱(SR-FTIR)证实了CO中间体和C-N键的形成,随后密度泛函理论(DFT)计算表明,Cu/CuO整流异质界面调节了CO的吸附,显著增强了CO和NOH中间体之间随后的C-N偶联动力学。这项工作不仅为C-N偶联提供了一条开创性的先进途径,还为用于尿素合成的铜基异质界面催化剂提供了深刻的见解。