Suppr超能文献

晶格氧驱动二氧化碳和硝酸盐在铜上的共吸附:高效尿素电合成的途径

Lattice Oxygen-Driven Co-Adsorption of Carbon Dioxide and Nitrate on Copper: A Pathway to Efficient Urea Electrosynthesis.

作者信息

Wei Xiaoxiao, Liu Shao-Qing, Liu Hengjie, Ding Yutian, Lei Peng-Xia, Wu Shuwen, Song Li, Fu Xian-Zhu, Luo Jing-Li

机构信息

Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230052, China.

出版信息

J Am Chem Soc. 2025 Feb 19;147(7):6049-6057. doi: 10.1021/jacs.4c16801. Epub 2025 Feb 10.

Abstract

The electrochemical coupling of CO and NO on copper-based catalysts presents a sustainable strategy for urea production while simultaneously addressing wastewater denitrification. However, the inefficient random adsorption of CO and NO on the copper surface limits the interaction of the key carbon and nitrogen intermediates, thereby impeding efficient C-N coupling. In this study, we demonstrate that the residual lattice oxygen in oxide-derived copper nanosheets (O-Cu) can effectively tune the electron distribution, thus activating neighboring copper atoms and generating electron-deficient copper (Cu) sites. These Cu sites enhance CO adsorption and stabilize *CO intermediates, which enables the directional NO adsorption at adjacent Cu sites. This mechanism shortens the C-N coupling pathway and achieves a urea yield of up to 298.67 mmol h g at -0.7 V versus RHE, with an average Faradaic efficiency of 31.71% at a high current density of ∼95 mA cm. In situ spectroscopic measurements confirmed the formation of Cu sites and tracked the evolution of the key intermediates (i.e., *CO, *NO, *OCNO, and *NOCONO) during urea synthesis. Density functional theory calculations revealed that Cu sites promote adjacent coadsorption of *CO and *NO, as well as *OCNO and *NO, significantly improving C-N coupling kinetics. This study underscores the critical role of lattice oxygen in facilitating adjacent coadsorption and improving C-N coupling selectivity.

摘要

铜基催化剂上CO和NO的电化学偶联为尿素生产提供了一种可持续策略,同时解决了废水脱氮问题。然而,CO和NO在铜表面的低效随机吸附限制了关键碳和氮中间体的相互作用,从而阻碍了高效的C-N偶联。在本研究中,我们证明了氧化物衍生的铜纳米片(O-Cu)中的残余晶格氧可以有效地调节电子分布,从而激活相邻的铜原子并产生缺电子的铜(Cu)位点。这些Cu位点增强了CO吸附并稳定了CO中间体,使得NO能够在相邻的Cu位点定向吸附。这种机制缩短了C-N偶联途径,在相对于可逆氢电极(RHE)为-0.7 V时实现了高达298.67 mmol h g的尿素产率,在约95 mA cm的高电流密度下平均法拉第效率为31.71%。原位光谱测量证实了Cu位点的形成,并跟踪了尿素合成过程中关键中间体(即CO、NO、OCNO和NOCONO)的演变。密度泛函理论计算表明,Cu位点促进了CO和NO以及OCNO和*NO的相邻共吸附,显著改善了C-N偶联动力学。本研究强调了晶格氧在促进相邻共吸附和提高C-N偶联选择性方面的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验