Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
J Extracell Vesicles. 2024 Sep;13(9):e12511. doi: 10.1002/jev2.12511.
Extracellular vesicles (EVs) contain cell-derived lipids, proteins and RNAs; however, determining the tissue- and cell-type-specific EV abundances in body fluids remains a significant hurdle for our understanding of EV biology. While tissue- and cell-type-specific EV abundances can be estimated by matching the EV's transcriptome to a tissue's/cell type's expression signature using deconvolutional methods, a comparative assessment of deconvolution methods' performance on EV transcriptome data is currently lacking. We benchmarked 11 deconvolution methods using data from four cell lines and their EVs, in silico mixtures, 118 human plasma and 88 urine EVs. We identified deconvolution methods that estimated cell type-specific abundances of pure and in silico mixed cell line-derived EV samples with high accuracy. Using data from two urine EV cohorts with different EV isolation procedures, four deconvolution methods produced highly similar results. The three methods were also concordant in their tissue- and cell-type-specific plasma EV abundance estimates. We identified driving factors for deconvolution accuracy and highlighted the importance of implementing biological knowledge in creating the tissue/cell type signature. Overall, our analyses demonstrate that the deconvolution algorithms DWLS and CIBERSORTx produce highly similar and accurate estimates of tissue- and cell-type-specific EV abundances in biological fluids.
细胞外囊泡(EVs)包含细胞来源的脂质、蛋白质和 RNA;然而,确定体液中组织和细胞类型特异性 EV 的丰度仍然是我们理解 EV 生物学的一个重大障碍。虽然可以通过使用去卷积方法将 EV 的转录组与组织/细胞类型的表达特征进行匹配来估计组织和细胞类型特异性 EV 的丰度,但目前缺乏对去卷积方法在 EV 转录组数据上性能的比较评估。我们使用来自四个细胞系及其 EV、模拟混合物、118 份人血浆和 88 份尿液 EV 的数据,对 11 种去卷积方法进行了基准测试。我们确定了一些去卷积方法,这些方法可以高精度地估计纯和模拟混合细胞系来源 EV 样本的细胞类型特异性丰度。使用来自两个具有不同 EV 分离程序的尿液 EV 队列的数据,四种去卷积方法产生了高度相似的结果。这三种方法在其组织和细胞类型特异性血浆 EV 丰度估计方面也具有一致性。我们确定了去卷积准确性的驱动因素,并强调了在创建组织/细胞类型特征时实施生物学知识的重要性。总体而言,我们的分析表明,去卷积算法 DWLS 和 CIBERSORTx 可以高度相似且准确地估计生物体液中的组织和细胞类型特异性 EV 丰度。