School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.
Max Planck Unit for the Science of Pathogens, Berlin, Germany.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0074824. doi: 10.1128/aem.00748-24. Epub 2024 Sep 25.
The "knallgas" bacterium is attracting interest due to its extremely versatile metabolism. can use hydrogen or formic acid as an energy source, fixes CO the Calvin-Benson-Bassham (CBB) cycle, and grows on organic acids and sugars. Its tripartite genome is notable for its size and duplications of key genes (CBB cycle, hydrogenases, and nitrate reductases). Little is known about which of these isoenzymes and their cofactors are actually utilized for growth on different substrates. Here, we investigated the energy metabolism of H16 by growing a barcoded transposon knockout library on succinate, fructose, hydrogen (H/CO), and formic acid. The fitness contribution of each gene was determined from enrichment or depletion of the corresponding mutants. Fitness analysis revealed that (i) some, but not all, molybdenum cofactor biosynthesis genes were essential for growth on formate and nitrate respiration. (ii) Soluble formate dehydrogenase (FDH) was the dominant enzyme for formate oxidation, not membrane-bound FDH. (iii) For hydrogenases, both soluble and membrane-bound enzymes were utilized for lithoautotrophic growth. (iv) Of the six terminal respiratory complexes in H16, only some are utilized, and utilization depends on the energy source. (v) Deletion of hydrogenase-related genes boosted heterotrophic growth, and we show that the relief from associated protein cost is responsible for this phenomenon. This study evaluates the contribution of each of 's genes to fitness in biotechnologically relevant growth regimes. Our results illustrate the genomic redundancy of this generalist bacterium and inspire future engineering strategies.IMPORTANCEThe soil bacterium can grow on gas mixtures of CO, H, and O. It also consumes formic acid as carbon and energy source and various other substrates. This metabolic flexibility comes at a price, for example, a comparatively large genome (6.6 Mb) and a significant background expression of lowly utilized genes. In this study, we mutated every non-essential gene in using barcoded transposons in order to determine their effect on fitness. We grew the mutant library in various trophic conditions including hydrogen and formate as the sole energy source. Fitness analysis revealed which of the various energy-generating iso-enzymes are actually utilized in which condition. For example, only a few of the six terminal respiratory complexes are used, and utilization depends on the substrate. We also show that the protein cost for the various lowly utilized enzymes represents a significant growth disadvantage in specific conditions, offering a route to rational engineering of the genome. All fitness data are available in an interactive app at https://m-jahn.shinyapps.io/ShinyLib/.
“knallgas”细菌因其极其多样的新陈代谢而引起关注。它可以使用氢气或甲酸作为能源,固定 CO ,进行卡尔文-本森-巴斯汉姆(CBB)循环,并利用有机酸和糖生长。其三分体基因组因其大小和关键基因(CBB 循环、氢化酶和硝酸盐还原酶)的重复而引人注目。关于哪些同工酶及其辅助因子实际上用于不同底物的生长,人们知之甚少。在这里,我们通过在琥珀酸、果糖、氢气(H/CO)和甲酸上生长带有条形码转座子敲除文库来研究 H16 的能量代谢。通过富集或耗尽相应的突变体来确定每个基因的适应度贡献。适应性分析表明:(i)不是所有的钼辅因子生物合成基因都是生长在甲酸盐和硝酸盐呼吸所必需的。(ii)可溶性甲酸脱氢酶(FDH)是甲酸盐氧化的主要酶,而不是膜结合的 FDH。(iii)对于氢化酶,可溶性和膜结合的酶都被用于 lithoautotrophic 生长。(iv)在 H16 中的六个末端呼吸复合物中,只有一些被利用,并且利用取决于能源。(v)删除与氢化酶相关的基因促进了异养生长,我们表明与相关蛋白成本相关的缓解是造成这种现象的原因。本研究评估了 H16 中每个基因对生物技术相关生长条件下适应性的贡献。我们的结果说明了这种通用细菌的基因组冗余性,并为未来的工程策略提供了启示。
重要性
土壤细菌 可以在 CO、H 和 O 的气体混合物中生长。它还以甲酸作为碳和能源源以及各种其他底物进行消耗。这种代谢灵活性是有代价的,例如,相对较大的基因组(6.6 Mb)和低利用率基因的大量背景表达。在这项研究中,我们使用带有条形码的转座子突变了 H16 中的每一个非必需基因,以确定它们对适应性的影响。我们在各种营养条件下生长突变文库,包括氢气和甲酸盐作为唯一的能源。适应性分析揭示了在何种条件下实际利用了各种产生能量的同工酶。例如,只有六个末端呼吸复合物中的几个被利用,并且利用取决于底物。我们还表明,各种低利用率酶的蛋白成本在特定条件下代表了显著的生长劣势,为基因组的合理工程提供了一条途径。所有的适应性数据都可以在 https://m-jahn.shinyapps.io/ShinyLib/ 上的交互式应用程序中获得。