Suppr超能文献

通过大肠杆菌中依赖金属的甲酸脱氢酶实现可再生甲酸的快速生长和高滴度生物生产。

Fast growth and high-titer bioproduction from renewable formate via metal-dependent formate dehydrogenase in Escherichia coli.

作者信息

Cowan Aidan E, Hillers Mason, Rainaldi Vittorio, Collas Florent, Choudhary Hemant, Zakaria Basem S, Bieberach Gregory G, Carruthers David N, Grabovac Maxwell, Gin Jennifer W, Cawthon Bridgie, Chen Yan, Turumtay Emine Akyuz, Baidoo Edward E K, Petzold Christopher J, Feist Adam M, Tejedor-Sanz Sara, Kensy Frank, Simmons Blake A, Keasling Jay D, Claassens Nico J

机构信息

Joint BioEnergy Institute, Emeryville, CA, USA.

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.

出版信息

Nat Commun. 2025 Jul 1;16(1):5908. doi: 10.1038/s41467-025-61001-y.

Abstract

Microbial bioproduction using one-carbon (C1) feedstocks has the potential to decarbonize the manufacturing of materials, fuels, and chemicals. Formate is a promising C1 feedstock, and the realization of industrial, formatotrophic platform organisms is a key goal for C1-based bioproduction. So far, a major limitation for synthetic formatotrophy has been slow energy supply due to slow formate dehydrogenase activity. Here, we implement a fast, metal-dependent formate dehydrogenase complex in a synthetic formatotrophic Escherichia coli utilizing the reductive glycine pathway. After a short-term evolution, we demonstrate formatotrophic growth of E. coli with a doubling time of less than 4.5 h, comparable to the fastest natural formatotrophs. To further explore the potential of a formate-based bioeconomy, this strain is engineered to produce mevalonate, as well as the terpenoid and aviation fuel precursor isoprenol, using formate we generate directly from the electrochemical reduction of CO. This work demonstrates an improvement in bioproduct titer from formate, achieving the production of 3.8 g/L of mevalonate. Additionally, the abundant and recalcitrant polymer lignin is chemically decomposed into a formate-rich mixture of small organic acids and subsequently bioconverted into mevalonate. Overall, the described fast-growing, formatotrophic bioproduction strain demonstrates that a sustainable formate bioeconomy is within reach.

摘要

利用单碳(C1)原料进行微生物生物生产有潜力使材料、燃料和化学品的制造脱碳。甲酸是一种很有前景的C1原料,实现工业用、以甲酸为营养源的平台生物是基于C1的生物生产的关键目标。到目前为止,合成甲酸营养的一个主要限制是由于甲酸脱氢酶活性低导致能量供应缓慢。在此,我们在利用还原性甘氨酸途径的合成甲酸营养型大肠杆菌中构建了一种快速、依赖金属的甲酸脱氢酶复合物。经过短期进化,我们证明了大肠杆菌的甲酸营养型生长,其倍增时间小于4.5小时,与最快的天然甲酸营养菌相当。为了进一步探索基于甲酸的生物经济的潜力,对该菌株进行工程改造,使其利用我们直接从CO的电化学还原生成的甲酸来生产甲羟戊酸以及萜类化合物和航空燃料前体异戊二烯醇。这项工作展示了从甲酸提高生物产品滴度,实现了3.8 g/L甲羟戊酸的生产。此外,丰富且难降解的聚合物木质素被化学分解成富含甲酸的小分子有机酸混合物,随后生物转化为甲羟戊酸。总体而言,所描述的快速生长的甲酸营养型生物生产菌株表明可持续的甲酸生物经济已触手可及。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验