Murdoch Children's Research Institute, Parkville, Australia.
Department of Paediatrics, The University of Melbourne, Parkville, Australia.
Stud Health Technol Inform. 2024 Sep 24;318:30-35. doi: 10.3233/SHTI240887.
Social media offers a rich source of real-time health data, including potential vaccine reactions. However, extracting meaningful insights is challenging due to the noisy nature of social media content. This paper explores using large language models (LLMs) and prompt engineering to detect personal mentions of vaccine reactions. Different prompting strategies were evaluated on two LLM models (GPT-3.5 and GPT-4) using Reddit data focused on shingles (zoster) vaccines. Zero-shot and few-shot learning approaches with both standard and chain-of-thought prompts were compared. The findings demonstrate that GPT-based models with carefully crafted chain-of-thought prompts could identify the relevant social media posts. Few-shot learning helped GPT4 models to identify more of the marginal cases, although less precisely. The use of LLMs for classification with lightweight supervised pretrained language models (PLMs) found that PLMs outperform LLMs. However, a potential benefit in using LLMs to help identify records for training PLMs was revealed, especially to eliminate false negatives, and LLMs could be used as classifiers when insufficient data exists to train a PLM.
社交媒体提供了丰富的实时健康数据来源,包括潜在的疫苗反应。然而,由于社交媒体内容的嘈杂性质,提取有意义的见解具有挑战性。本文探讨了使用大型语言模型 (LLM) 和提示工程来检测疫苗反应的个人提及。使用针对带状疱疹 (带状疱疹) 疫苗的 Reddit 数据,在两个 LLM 模型 (GPT-3.5 和 GPT-4) 上评估了不同的提示策略。比较了零-shot 和 few-shot 学习方法,以及标准和思维链提示。研究结果表明,基于 GPT 的模型使用精心设计的思维链提示可以识别相关的社交媒体帖子。few-shot 学习有助于 GPT4 模型更准确地识别更多边缘情况。使用 LLM 进行分类,使用轻量级监督预训练语言模型 (PLM),发现 PLM 优于 LLM。然而,揭示了使用 LLM 帮助识别记录以训练 PLM 的潜在好处,特别是消除假阴性,并且当存在不足以为 PLM 训练数据时,可以使用 LLM 作为分类器。