Department of Radiology, University Hospital Freiburg, Freiburg, Germany.
Rofo. 2024 Nov;196(11):1166-1170. doi: 10.1055/a-2264-5631. Epub 2024 Feb 26.
Large language models (LLMs) such as ChatGPT have shown significant potential in radiology. Their effectiveness often depends on prompt engineering, which optimizes the interaction with the chatbot for accurate results. Here, we highlight the critical role of prompt engineering in tailoring the LLMs' responses to specific medical tasks.
Using a clinical case, we elucidate different prompting strategies to adapt the LLM ChatGPT using GPT4 to new tasks without additional training of the base model. These approaches range from precision prompts to advanced in-context methods such as few-shot and zero-shot learning. Additionally, the significance of embeddings, which serve as a data representation technique, is discussed.
Prompt engineering substantially improved and focused the chatbot's output. Moreover, embedding of specialized knowledge allows for more transparent insight into the model's decision-making and thus enhances trust.
Despite certain challenges, prompt engineering plays a pivotal role in harnessing the potential of LLMs for specialized tasks in the medical domain, particularly radiology. As LLMs continue to evolve, techniques like few-shot learning, zero-shot learning, and embedding-based retrieval mechanisms will become indispensable in delivering tailored outputs.
· Large language models might impact radiological practice and decision-masking.. · However, implementation and performance are dependent on the assigned task.. · Optimization of prompting strategies can substantially improve model performance.. · Strategies for prompt engineering range from precision prompts to zero-shot learning..
· Russe MF, Reisert M, Bamberg F et al. Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning . Fortschr Röntgenstr 2024; 196: 1166 - 1170.
像 ChatGPT 这样的大型语言模型(LLMs)在放射学中显示出了巨大的潜力。它们的有效性通常取决于提示工程,该工程通过优化与聊天机器人的交互来获得准确的结果。在这里,我们强调了提示工程在调整 LLM 的响应以适应特定医疗任务方面的关键作用。
使用一个临床案例,我们阐明了不同的提示策略,以适应 LLM ChatGPT 使用 GPT4 进行新任务,而无需对基础模型进行额外的训练。这些方法从精调提示到先进的上下文方法(如少样本和零样本学习)都有涉及。此外,还讨论了作为数据表示技术的嵌入的重要性。
提示工程大大改善并集中了聊天机器人的输出。此外,专门知识的嵌入允许更透明地了解模型的决策过程,从而增强了信任。
尽管存在某些挑战,但提示工程在利用 LLM 在医学领域的专门任务中的潜力方面发挥着关键作用,特别是在放射学中。随着 LLM 的不断发展,像少样本学习、零样本学习和基于嵌入的检索机制等技术将成为提供定制化输出的不可或缺的手段。
·大型语言模型可能会影响放射科的实践和决策。·然而,实施和性能取决于所分配的任务。·优化提示策略可以大大提高模型性能。·提示工程策略的范围从精调提示到零样本学习。
·Russe MF, Reisert M, Bamberg F 等人。通过提示工程改进大型语言模型在放射学中的应用:从精调提示到零样本学习[J]。放射学进展 2024; 196: 1166-1170.