Suppr超能文献

通过生成式深度学习模型准确预测随机多孔介质中的不连续裂纹路径。

Accurate prediction of discontinuous crack paths in random porous media via a generative deep learning model.

作者信息

He Yuxiang, Tan Yu, Yang Mingshan, Wang Yongbin, Xu Yangguang, Yuan Jianghong, Li Xiangyu, Chen Weiqiu, Kang Guozheng

机构信息

Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China.

出版信息

Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2413462121. doi: 10.1073/pnas.2413462121. Epub 2024 Sep 25.

Abstract

Pore structures provide extra freedoms for the design of porous media, leading to desirable properties, such as high catalytic rate, energy storage efficiency, and specific strength. This unfortunately makes the porous media susceptible to failure. Deep understanding of the failure mechanism in microstructures is a key to customizing high-performance crack-resistant porous media. However, solving the fracture problem of the porous materials is computationally intractable due to the highly complicated configurations of microstructures. To bridge the structural configurations and fracture responses of random porous media, a unique generative deep learning model is developed. A two-step strategy is proposed to deconstruct the fracture process, which sequentially corresponds to elastic deformation and crack propagation. The geometry of microstructure is translated into a scalar of elastic field as an intermediate variable, and then, the crack path is predicted. The neural network precisely characterizes the strong interactions among pore structures, the multiscale behaviors of fracture, and the discontinuous essence of crack propagation. Crack paths in random porous media are accurately predicted by simply inputting the images of targets, without inputting any additional input physical information. The prediction model enjoys an outstanding performance with a prediction accuracy of 90.25% and possesses a robust generalization capability. The accuracy of the present model is a record so far, and the prediction is accomplished within a second. This study opens an avenue to high-throughput evaluation of the fracture behaviors of heterogeneous materials with complex geometries.

摘要

孔隙结构为多孔介质的设计提供了额外的自由度,从而产生了诸如高催化速率、能量存储效率和比强度等理想性能。不幸的是,这也使得多孔介质容易发生破坏。深入了解微观结构中的破坏机制是定制高性能抗裂多孔介质的关键。然而,由于微观结构的高度复杂配置,解决多孔材料的断裂问题在计算上是难以处理的。为了建立随机多孔介质的结构配置与断裂响应之间的联系,开发了一种独特的生成式深度学习模型。提出了一种两步策略来解构断裂过程,该过程依次对应于弹性变形和裂纹扩展。微观结构的几何形状被转换为弹性场的标量作为中间变量,然后预测裂纹路径。神经网络精确地表征了孔隙结构之间的强相互作用、断裂的多尺度行为以及裂纹扩展的不连续本质。通过简单地输入目标图像,无需输入任何额外的物理信息,就能准确预测随机多孔介质中的裂纹路径。该预测模型具有出色的性能,预测准确率为90.25%,并具有强大的泛化能力。目前模型的准确率是迄今为止的最高记录,且预测在一秒内即可完成。本研究为高通量评估具有复杂几何形状的异质材料的断裂行为开辟了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed9/11459186/595f04e7320b/pnas.2413462121fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验