文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于制造各向异性胶原支架的创新 4D 打印方法。

An innovative 4D printing approach for fabrication of anisotropic collagen scaffolds.

机构信息

Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States of America.

Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, United States of America.

出版信息

Biofabrication. 2024 Oct 24;17(1):015002. doi: 10.1088/1758-5090/ad7f8f.


DOI:10.1088/1758-5090/ad7f8f
PMID:39321844
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11499585/
Abstract

Collagen anisotropy is known to provide the essential topographical cues to guide tissue-specific cell function. Recent work has shown that extrusion-based printing using collagenous inks yield 3D scaffolds with high geometric precision and print fidelity. However, these scaffolds lack collagen anisotropy. In this study, extrusion-based 3D printing was combined with a magnetic alignment approach in an innovative 4D printing scheme to generate 3D collagen scaffolds with high degree of collagen anisotropy. Specifically, the 4D printing process parameters-collagen (Col):xanthan gum (XG) ratio (Col:XG; 1:1, 4:1, 9:1 v/v), streptavidin-coated magnetic particle concentration (SMP; 0, 0.2, 0.4 mg ml), and print flow speed (2, 3 mm s)-were modulated and the effects of these parameters on rheological properties, print fidelity, and collagen alignment were assessed. Further, the effects of collagen anisotropy on human mesenchymal stem cell (hMSC) morphology, orientation, metabolic activity, and ligamentous differentiation were investigated. Results showed that increasing the XG composition (Col:XG 1:1) enhanced ink viscosity and yielded scaffolds with good print fidelity but poor collagen alignment. On the other hand, use of inks with lower XG composition (Col:XG 4:1 and 9:1) together with 0.4 mg mlSMP concentration yielded scaffolds with high degree of collagen alignment albeit with suboptimal print fidelity. Modulating the print flow speed conditions (2 mm s) with 4:1 Col:XG inks and 0.4 mg mlSMP resulted in improved print fidelity of the collagen scaffolds while retaining high level of collagen anisotropy. Cell studies revealed hMSCs orient uniformly on aligned collagen scaffolds. More importantly, collagen anisotropy was found to trigger tendon or ligament-like differentiation of hMSCs. Together, these results suggest that 4D printing is a viable strategy to generate anisotropic collagen scaffolds with significant potential for use in tendon and ligament tissue engineering applications.

摘要

胶原各向异性已知为提供指导组织特异性细胞功能的基本形貌线索。最近的工作表明,使用胶原油墨的挤出式打印可产生具有高精度和高打印保真度的 3D 支架。然而,这些支架缺乏胶原各向异性。在这项研究中,挤出式 3D 打印与磁定向方法相结合,提出了一种创新的 4D 打印方案,以生成具有高度胶原各向异性的 3D 胶原支架。具体来说,4D 打印工艺参数——胶原(Col):黄原胶(XG)比(Col:XG;1:1、4:1、9:1v/v)、链霉亲和素包覆磁性粒子浓度(SMP;0、0.2、0.4mg/ml)和打印流速(2、3mm/s)——被调制,评估这些参数对流变性能、打印保真度和胶原排列的影响。进一步研究了胶原各向异性对人间充质干细胞(hMSC)形态、取向、代谢活性和韧带分化的影响。结果表明,增加 XG 组成(Col:XG 1:1)可增强油墨粘度,获得具有良好打印保真度但胶原排列不良的支架。另一方面,使用低 XG 组成(Col:XG 4:1 和 9:1)的油墨,并结合 0.4mg/mlSMP 浓度,可获得具有高度胶原排列的支架,尽管打印保真度不理想。使用 4:1 Col:XG 油墨和 0.4mg/mlSMP 调制打印流速条件(2mm/s)可提高胶原支架的打印保真度,同时保持高水平的胶原各向异性。细胞研究表明,hMSCs 在排列整齐的胶原支架上均匀取向。更重要的是,胶原各向异性被发现可触发 hMSCs 向肌腱或韧带样分化。总之,这些结果表明,4D 打印是一种可行的策略,可生成具有显著潜力的各向异性胶原支架,可用于肌腱和韧带组织工程应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/1350fb73ab41/bfad7f8ff7_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/6e49c252a22f/bfad7f8ff1_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/5415a4e6a865/bfad7f8ff2_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/79e4a4e4896e/bfad7f8ff3_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/564ca9ac3d96/bfad7f8ff4_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/0ff468cf963f/bfad7f8ff5_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/10a2b9ee8631/bfad7f8ff6_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/1350fb73ab41/bfad7f8ff7_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/6e49c252a22f/bfad7f8ff1_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/5415a4e6a865/bfad7f8ff2_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/79e4a4e4896e/bfad7f8ff3_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/564ca9ac3d96/bfad7f8ff4_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/0ff468cf963f/bfad7f8ff5_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/10a2b9ee8631/bfad7f8ff6_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29c/11499585/1350fb73ab41/bfad7f8ff7_hr.jpg

相似文献

[1]
An innovative 4D printing approach for fabrication of anisotropic collagen scaffolds.

Biofabrication. 2024-10-24

[2]
High-resolution 3D printing of xanthan gum/nanocellulose bio-inks.

Int J Biol Macromol. 2022-6-1

[3]
High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier.

ACS Appl Mater Interfaces. 2023-11-29

[4]
Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.

ACS Appl Mater Interfaces. 2020-1-17

[5]
3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.

Biofabrication. 2020-3-13

[6]
Development of a hyaluronic acid-collagen bioink for shear-induced fibers and cells alignment.

Biomed Mater. 2023-10-19

[7]
Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing.

Biofabrication. 2020-7-29

[8]
Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.

ACS Appl Mater Interfaces. 2018-10-26

[9]
Study on Printability Evaluation of Alginate/Silk Fibroin/Collagen Double-Cross-Linked Inks and the Properties of 3D Printed Constructs.

ACS Biomater Sci Eng. 2024-10-14

[10]
Dual crosslinking strategy to generate mechanically viable cell-laden printable constructs using methacrylated collagen bioinks.

Mater Sci Eng C Mater Biol Appl. 2019-10-9

本文引用的文献

[1]
Decoupling the Effects of Collagen Alignment and Bioceramic Incorporation on Osteoblast Proliferation, Differentiation, and Mineralization.

Mater Today Commun. 2024-3

[2]
Magnetic Alignment of Collagen: Principles, Methods, Applications, and Fiber Alignment Analyses.

Tissue Eng Part B Rev. 2024-8

[3]
Microfluidically Aligned Collagen to Maintain the Phenotype of Tenocytes In Vitro.

Adv Healthc Mater. 2024-3

[4]
Collagen and Beyond: A Comprehensive Comparison of Human ECM Properties Derived from Various Tissue Sources for Regenerative Medicine Applications.

J Funct Biomater. 2023-7-11

[5]
Smart biomaterials: From 3D printing to 4D bioprinting.

Methods. 2022-9

[6]
Mesenchymal Stem Cell Delivery via Topographically Tenoinductive Collagen Biotextile Enhances Regeneration of Segmental Tendon Defects.

Am J Sports Med. 2022-7

[7]
High-resolution 3D printing of xanthan gum/nanocellulose bio-inks.

Int J Biol Macromol. 2022-6-1

[8]
Magnetic Nanoparticle-Mediated Orientation of Collagen Hydrogels for Engineering of Tendon-Mimetic Constructs.

Front Bioeng Biotechnol. 2022-3-17

[9]
Four-Dimensional Printing for Hydrogel: Theoretical Concept, 4D Materials, Shape-Morphing Way, and Future Perspectives.

Polymers (Basel). 2021-11-8

[10]
3D bioprinting and microscale organization of vascularized tissue constructs using collagen-based bioink.

Biotechnol Bioeng. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索