Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States of America.
Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, United States of America.
Biofabrication. 2024 Oct 24;17(1):015002. doi: 10.1088/1758-5090/ad7f8f.
Collagen anisotropy is known to provide the essential topographical cues to guide tissue-specific cell function. Recent work has shown that extrusion-based printing using collagenous inks yield 3D scaffolds with high geometric precision and print fidelity. However, these scaffolds lack collagen anisotropy. In this study, extrusion-based 3D printing was combined with a magnetic alignment approach in an innovative 4D printing scheme to generate 3D collagen scaffolds with high degree of collagen anisotropy. Specifically, the 4D printing process parameters-collagen (Col):xanthan gum (XG) ratio (Col:XG; 1:1, 4:1, 9:1 v/v), streptavidin-coated magnetic particle concentration (SMP; 0, 0.2, 0.4 mg ml), and print flow speed (2, 3 mm s)-were modulated and the effects of these parameters on rheological properties, print fidelity, and collagen alignment were assessed. Further, the effects of collagen anisotropy on human mesenchymal stem cell (hMSC) morphology, orientation, metabolic activity, and ligamentous differentiation were investigated. Results showed that increasing the XG composition (Col:XG 1:1) enhanced ink viscosity and yielded scaffolds with good print fidelity but poor collagen alignment. On the other hand, use of inks with lower XG composition (Col:XG 4:1 and 9:1) together with 0.4 mg mlSMP concentration yielded scaffolds with high degree of collagen alignment albeit with suboptimal print fidelity. Modulating the print flow speed conditions (2 mm s) with 4:1 Col:XG inks and 0.4 mg mlSMP resulted in improved print fidelity of the collagen scaffolds while retaining high level of collagen anisotropy. Cell studies revealed hMSCs orient uniformly on aligned collagen scaffolds. More importantly, collagen anisotropy was found to trigger tendon or ligament-like differentiation of hMSCs. Together, these results suggest that 4D printing is a viable strategy to generate anisotropic collagen scaffolds with significant potential for use in tendon and ligament tissue engineering applications.
胶原各向异性已知为提供指导组织特异性细胞功能的基本形貌线索。最近的工作表明,使用胶原油墨的挤出式打印可产生具有高精度和高打印保真度的 3D 支架。然而,这些支架缺乏胶原各向异性。在这项研究中,挤出式 3D 打印与磁定向方法相结合,提出了一种创新的 4D 打印方案,以生成具有高度胶原各向异性的 3D 胶原支架。具体来说,4D 打印工艺参数——胶原(Col):黄原胶(XG)比(Col:XG;1:1、4:1、9:1v/v)、链霉亲和素包覆磁性粒子浓度(SMP;0、0.2、0.4mg/ml)和打印流速(2、3mm/s)——被调制,评估这些参数对流变性能、打印保真度和胶原排列的影响。进一步研究了胶原各向异性对人间充质干细胞(hMSC)形态、取向、代谢活性和韧带分化的影响。结果表明,增加 XG 组成(Col:XG 1:1)可增强油墨粘度,获得具有良好打印保真度但胶原排列不良的支架。另一方面,使用低 XG 组成(Col:XG 4:1 和 9:1)的油墨,并结合 0.4mg/mlSMP 浓度,可获得具有高度胶原排列的支架,尽管打印保真度不理想。使用 4:1 Col:XG 油墨和 0.4mg/mlSMP 调制打印流速条件(2mm/s)可提高胶原支架的打印保真度,同时保持高水平的胶原各向异性。细胞研究表明,hMSCs 在排列整齐的胶原支架上均匀取向。更重要的是,胶原各向异性被发现可触发 hMSCs 向肌腱或韧带样分化。总之,这些结果表明,4D 打印是一种可行的策略,可生成具有显著潜力的各向异性胶原支架,可用于肌腱和韧带组织工程应用。
Biofabrication. 2024-10-24
Int J Biol Macromol. 2022-6-1
ACS Appl Mater Interfaces. 2023-11-29
ACS Appl Mater Interfaces. 2020-1-17
Biofabrication. 2020-3-13
Biomed Mater. 2023-10-19
ACS Appl Mater Interfaces. 2018-10-26
Mater Sci Eng C Mater Biol Appl. 2019-10-9
Tissue Eng Part B Rev. 2024-8
Adv Healthc Mater. 2024-3
Methods. 2022-9
Int J Biol Macromol. 2022-6-1
Front Bioeng Biotechnol. 2022-3-17