Kitainda Vivian, Jez Joseph M
Department of Biology, Washington University in St Louis, St Louis, Missouri, USA.
Department of Biology, Washington University in St Louis, St Louis, Missouri, USA.
J Biol Chem. 2024 Nov;300(11):107814. doi: 10.1016/j.jbc.2024.107814. Epub 2024 Sep 23.
In Brassica plants, methionine-derived aliphatic glucosinolates are chemically diverse natural products that serve as plant defense compounds, as well as molecules with dietary health-promoting effects. During their biosynthesis, methylthioalkylmalate synthase (MAMS) catalyzes the elongation reaction of the aliphatic chain. The MAMS-catalyzed condensation of 4-methylthio-2-oxobutanoic acid and acetyl-CoA generates a 2-malate derivative that either enters the pathway for the synthesis of C-glucosinolates or undergoes additional extension reactions, which lead to C- to C-glucosinolates. Recent determination of the x-ray crystal structure of MAMS from Brassica juncea (Indian mustard) provided insight on the molecular evolution of MAMS, especially substrate specificity changes, from the leucine biosynthesis enzyme α-isopropylmalate synthase but left details of the reaction mechanism unanswered. Here we use the B. juncea MAMS2A (BjMAMS2A) isoform to analyze the kinetic and catalytic mechanisms of this enzyme. Initial velocity studies indicate that MAMS follows an ordered bi bi kinetic mechanism, which based on the x-ray crystal structure, involves binding of 4-methylthio-2-oxobutanoic acid followed by acetyl-CoA. Examination of the pH-dependence of k and k/K are consistent with acid/base catalysis. Site-directed mutagenesis of three residues originally proposed to function in the reaction mechanism-Arg89 (R89A, R89K, R89Q), Glu227 (E227A, E227D, E227Q), and His388 (H388A, H388N, H388Q, H388D, and H388E)-showed that only two mutants (E227Q and H388N) retained activity. Based on available structural and biochemical data, a revised reaction mechanism for MAMS-catalyzed elongation of methionine-derived aliphatic glucosinolates is proposed, which is likely also conserved in α-isopropylmalate synthase from leucine biosynthesis in plants and microbes.
在芸苔属植物中,蛋氨酸衍生的脂肪族硫代葡萄糖苷是化学性质多样的天然产物,它们既是植物防御化合物,也是具有促进饮食健康作用的分子。在其生物合成过程中,甲硫基烷基苹果酸合酶(MAMS)催化脂肪链的延伸反应。MAMS催化4-甲硫基-2-氧代丁酸与乙酰辅酶A的缩合反应生成一种2-苹果酸衍生物,该衍生物要么进入C-硫代葡萄糖苷的合成途径,要么经历额外的延伸反应,从而生成从C-到C-硫代葡萄糖苷。最近对来自芥菜(印度芥菜)的MAMS的X射线晶体结构的测定,为MAMS的分子进化,尤其是底物特异性变化,提供了见解,这些见解源于亮氨酸生物合成酶α-异丙基苹果酸合酶,但反应机制的细节仍未得到解答。在这里,我们使用芥菜MAMS2A(BjMAMS2A)同工型来分析该酶的动力学和催化机制。初始速度研究表明,MAMS遵循有序双底物双产物动力学机制,基于X射线晶体结构,该机制涉及4-甲硫基-2-氧代丁酸的结合,随后是乙酰辅酶A的结合。对k和k/K的pH依赖性的研究与酸碱催化一致。对最初提出在反应机制中起作用的三个残基进行定点诱变——精氨酸89(R89A、R89K、R89Q)、谷氨酸227(E227A、E227D、E227Q)和组氨酸388(H388A、H388N、H388Q、H388D和H388E)——结果表明只有两个突变体(E227Q和H388N)保留了活性。基于现有的结构和生化数据,提出了一种修订后的MAMS催化蛋氨酸衍生的脂肪族硫代葡萄糖苷延伸反应的机制,该机制可能在植物和微生物中亮氨酸生物合成的α-异丙基苹果酸合酶中也保守。