Suppr超能文献

遗传学中顺序马尔可夫合并模型的精确解码

Exact Decoding of a Sequentially Markov Coalescent Model in Genetics.

作者信息

Ki Caleb, Terhorst Jonathan

机构信息

Department of Statistics, University of Michigan.

出版信息

J Am Stat Assoc. 2024;119(547):2242-2255. doi: 10.1080/01621459.2023.2252570. Epub 2023 Oct 3.

Abstract

In statistical genetics, the sequentially Markov coalescent (SMC) is an important family of models for approximating the distribution of genetic variation data under complex evolutionary models. Methods based on SMC are widely used in genetics and evolutionary biology, with significant applications to genotype phasing and imputation, recombination rate estimation, and inferring population history. SMC allows for likelihood-based inference using hidden Markov models (HMMs), where the latent variable represents a genealogy. Because genealogies are continuous, while HMMs are discrete, SMC requires discretizing the space of trees in a way that is awkward and creates bias. In this work, we propose a method that circumvents this requirement, enabling SMC-based inference to be performed in the natural setting of a continuous state space. We derive fast, exact procedures for frequentist and Bayesian inference using SMC. Compared to existing methods, ours requires minimal user intervention or parameter tuning, no numerical optimization or E-M, and is faster and more accurate.

摘要

在统计遗传学中,序列马尔可夫合并模型(SMC)是一类重要的模型家族,用于在复杂进化模型下近似遗传变异数据的分布。基于SMC的方法在遗传学和进化生物学中被广泛使用,在基因型定相和插补、重组率估计以及推断种群历史等方面有重要应用。SMC允许使用隐马尔可夫模型(HMM)进行基于似然的推断,其中潜在变量表示一个谱系。由于谱系是连续的,而HMM是离散的,SMC需要以一种笨拙且会产生偏差的方式对树的空间进行离散化。在这项工作中,我们提出了一种规避此要求的方法,使基于SMC的推断能够在连续状态空间的自然环境中进行。我们推导出了使用SMC进行频率主义和贝叶斯推断的快速、精确程序。与现有方法相比,我们的方法需要最少的用户干预或参数调整,无需数值优化或期望最大化算法,并且更快、更准确。

相似文献

1
Exact Decoding of a Sequentially Markov Coalescent Model in Genetics.遗传学中顺序马尔可夫合并模型的精确解码
J Am Stat Assoc. 2024;119(547):2242-2255. doi: 10.1080/01621459.2023.2252570. Epub 2023 Oct 3.
2
Limits and convergence properties of the sequentially Markovian coalescent.顺序马尔可夫凝聚的限制和收敛性质。
Mol Ecol Resour. 2021 Oct;21(7):2231-2248. doi: 10.1111/1755-0998.13416. Epub 2021 May 30.
3
Exact limits of inference in coalescent models.合并模型中推断的精确界限。
Theor Popul Biol. 2019 Feb;125:75-93. doi: 10.1016/j.tpb.2018.11.004. Epub 2018 Dec 17.
5
6
7
The Bacterial Sequential Markov Coalescent.细菌序列马尔可夫合并过程
Genetics. 2017 May;206(1):333-343. doi: 10.1534/genetics.116.198796. Epub 2017 Mar 3.
8
Approximating the coalescent with recombination.用重组近似溯祖过程。
Philos Trans R Soc Lond B Biol Sci. 2005 Jul 29;360(1459):1387-93. doi: 10.1098/rstb.2005.1673.
9
Bayesian phylodynamic inference of population dynamics with dormancy.具有休眠的种群动态的贝叶斯系统发育动力学推断
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2501394122. doi: 10.1073/pnas.2501394122. Epub 2025 May 2.

本文引用的文献

5
Inferring whole-genome histories in large population datasets.在大型人群数据集推断全基因组历史。
Nat Genet. 2019 Sep;51(9):1330-1338. doi: 10.1038/s41588-019-0483-y. Epub 2019 Sep 2.
8
Robust Design for Coalescent Model Inference.稳健设计用于合并模型推断。
Syst Biol. 2019 Sep 1;68(5):730-743. doi: 10.1093/sysbio/syz008.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验