Rahumi Or, Rath Manasa Kumar, Meshi Louisa, Rozenblium Ilia, Borodianskiy Konstantin
Department of Chemical Engineering, Ariel University, Ariel 40700, Israel.
Elcogen AS, 23 Valukoja, 11415 Tallinn, Estonia.
ACS Appl Mater Interfaces. 2024 Oct 9;16(40):53652-53664. doi: 10.1021/acsami.4c07968. Epub 2024 Sep 26.
Ammonia has emerged as a promising fuel for solid oxide fuel cells (SOFCs) owing to its high energy density, high hydrogen content, and carbon-free nature. Herein, the electrocatalytic potential of a novel Ni-doped SFM double-perovskite (SrFeNiMoO) is studied, for the first time, as an alternative anode material for symmetrical direct-ammonia SOFCs. Scanning and transmission electron microscopy characterization has revealed the exsolution of Ni-Fe nanoparticles (NPs) from the parent SrFeMoO under anode conditions, and X-ray diffraction has identified the FeNi phase after exposure to ammonia at 800 °C. The active-exsolved NPs contribute to achieving a maximal ammonia conversion rate of 97.9% within the cell's operating temperatures (550-800 °C). Utilizing 3D-printed symmetrical cells with SFNM-GDC electrodes, the study demonstrates comparable polarization resistances and peak power densities of 430 and 416 mW cm for H and NH fuels, respectively, with long-term stability and a negligible voltage loss of 0.48% per 100 h during ammonia-fed extended galvanostatic operation. Finally, the ammonia consumption mechanism is elucidated as a multistep process involving ammonia decomposition, followed by hydrogen oxidation. This study provides a promising avenue for improving the performance and stability of ammonia-based SOFCs for potential applications in clean energy conversion technologies.
由于氨具有高能量密度、高氢含量和无碳特性,它已成为固体氧化物燃料电池(SOFC)一种很有前景的燃料。在此,首次研究了一种新型镍掺杂的SFM双钙钛矿(SrFeNiMoO)作为对称直接氨SOFC替代阳极材料的电催化潜力。扫描和透射电子显微镜表征揭示了在阳极条件下,镍铁纳米颗粒(NPs)从母体SrFeMoO中析出,并且X射线衍射已确定在800℃下暴露于氨后形成了FeNi相。活性析出的NPs有助于在电池工作温度(550 - 800℃)范围内实现97.9%的最大氨转化率。利用具有SFNM - GDC电极的3D打印对称电池,该研究表明,对于H₂和NH₃燃料,极化电阻相当,峰值功率密度分别为430和416 mW/cm²,具有长期稳定性,并且在氨供料的恒电流扩展运行期间每100小时的电压损失可忽略不计,为0.48%。最后,阐明了氨消耗机制是一个多步骤过程,包括氨分解,然后是氢氧化。这项研究为提高基于氨的SOFC在清洁能源转换技术潜在应用中的性能和稳定性提供了一条很有前景的途径。