Sun Zongdong, Liu Jie, Xu Yongshan, Xiong Xiong, Li Yuan, Wang Meihui, Liu Kailang, Li Huiqiao, Wu Yanqing, Zhai Tianyou
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China.
School of Integrated Circuits and Beijing Advanced Innovation Center for Integrated Circuits, Peking University, Beijing, 100871, P. R. China.
Adv Mater. 2024 Nov;36(46):e2410469. doi: 10.1002/adma.202410469. Epub 2024 Sep 27.
Low-symmetry structures in van der Waals materials have facilitated the advancement of anisotropic electronic and optoelectronic devices. However, the intrinsic low symmetry structure exhibits a small adjustable anisotropy ratio (1-10), which hinders its further assembly and processing into high-performance devices. Here, a novel 2D anisotropic dielectric, GaInS (GIS), which induces isotropic MoS to exhibit significant anisotropic optical and electrical responses is demonstrated. With the excellent gate modulation ability of 2D GIS (dielectric constant k ∼12), MoS field effect transistor (FET) shows an adjustable conductance ratio from isotropic to anisotropic under dual-gate modulation, up to 10. Theoretical calculations indicate that anisotropy originates from lattice mismatch-induced charge density deformation at the interface. Moreover, the MoS/GIS photodetector demonstrates high responsivity (≈4750 A W) and a large dichroic ratio (≈167). The anisotropic van der Waals dielectric GIS paves the way for the development of 2D transition metal dichalcogenides (TMDCs) in the fields of anisotropic photonics, electronics, and optoelectronics.
范德华材料中的低对称结构推动了各向异性电子和光电器件的发展。然而,固有的低对称结构表现出较小的可调节各向异性比率(1-10),这阻碍了其进一步组装和加工成高性能器件。在此,展示了一种新型二维各向异性电介质GaInS(GIS),它能使各向同性的MoS表现出显著的各向异性光学和电学响应。凭借二维GIS出色的栅极调制能力(介电常数k ∼12),MoS场效应晶体管(FET)在双栅极调制下显示出从各向同性到各向异性的可调节电导率比率,高达10。理论计算表明,各向异性源于界面处晶格失配引起的电荷密度变形。此外,MoS/GIS光电探测器表现出高响应度(≈4750 A W)和大的二向色比(≈167)。各向异性范德华电介质GIS为二维过渡金属二硫属化物(TMDCs)在各向异性光子学、电子学和光电子学领域的发展铺平了道路。