Department of Biomedical Engineering (M.L.L., R.L.C., C.G., J.C.T.), University of Arizona, Tucson.
Department of Medicine, Division of Cardiology, Washington University at St. Louis, MO (J.J.).
Circ Res. 2024 Oct 25;135(10):974-989. doi: 10.1161/CIRCRESAHA.124.325223. Epub 2024 Sep 27.
Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort, which suggests the potential involvement of myofilament regulators in relaxation. A molecular-level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cTnC (cardiac troponin C)-cTnI (cardiac troponin I) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI.
HCM mutations R92L-cTnT (cardiac troponin T; Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo, in vitro, and in silico via 2-dimensional echocardiography, Western blotting, ex vivo hemodynamics, stopped-flow kinetics, time-resolved fluorescence resonance energy transfer, and molecular dynamics simulations.
The HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-DD) was sufficient to recover diastolic function to non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca dissociation rates associated with R92L-cTnT reconstituted with cTnI-DD led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via time-resolved fluorescence resonance energy transfer revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing time-resolved fluorescence resonance energy transfer distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence.
These data show that the early diastolic dysfunction observed in a subset of HCM is attributable to allosterically mediated structural changes at the cTnC-cTnI interface that impair accessibility of PKA, thereby blunting β-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.
左心室舒张功能障碍、充盈压升高和钙稳态失调是肥厚型心肌病(HCM)中导致舒张功能障碍的常见因素。研究表明,舒张功能障碍是肌节基因阳性的临床前 HCM 队列中的早期观察结果,这表明肌球蛋白丝调节剂可能参与舒张过程。然而,在肌球蛋白丝水平上对机制的分子水平理解仍存在不足。我们假设 cTnC(心肌肌钙蛋白 C)-cTnI(心肌肌钙蛋白 I)界面的突变特异性变构介导的变化可以通过降低 PKA 对 cTnI 的可及性来解释早期舒张功能障碍的发生。
通过二维超声心动图、Western 印迹、离体血液动力学、停流动力学、时间分辨荧光共振能量转移和分子动力学模拟,对 HCM 突变 R92L-cTnT(肌钙蛋白 T,Arg92Leu)和Δ160E-cTnT(Glu160 缺失)进行体内、体外和计算机模拟研究。
导致 HCM 的突变 R92L-cTnT 和Δ160E-cTnT 导致舒张功能障碍的起始时间不同。R92L-cTnT 表现为早期舒张功能障碍,同时 cTnI 的磷酸化程度局部降低。仅 R92L-cTnT 的 cTnI 组成性磷酸化(cTnI-DD)足以使舒张功能恢复到非 Tg 水平。与 R92L-cTnT 重建的 Ca 解离率的突变特异性变化导致我们研究 cTnC-cTnI 界面结构变化是否可能是这些观察结果的原因。我们通过时间分辨荧光共振能量转移来探测该界面,发现 cTnI 的 N 端重新定位,更接近 cTnC,同时围绕 PKA 共识序列的位点的距离分布降低。将时间分辨荧光共振能量转移距离作为约束条件应用于我们的原子模型,确定了共识序列附近的额外静电相互作用。
这些数据表明,在 HCM 的亚组中观察到的早期舒张功能障碍归因于 cTnC-cTnI 界面的变构介导的结构变化,这些变化会损害 PKA 的可及性,从而削弱β-肾上腺素能反应,并确定潜在的治疗干预靶点。