Suppr超能文献

关于伊桑·M·阿尔特、常秀亚、姜 Xun、刘清、莫梅、夏艾米·H 以及约瑟夫·G·易卜拉欣所著的《LEAP:用于从历史数据中借用信息的潜在可交换性先验》的讨论

Discussion on "LEAP: the latent exchangeability prior for borrowing information from historical data" by Ethan M. Alt, Xiuya Chang, Xun Jiang, Qing Liu, May Mo, H. Amy Xia, and Joseph G. Ibrahim.

作者信息

Thomas Shannon D, Kaizer Alexander M

机构信息

Department of Biostatistics and Informatives, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.

出版信息

Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae086.

Abstract

This discussion provides commentary on the paper by Ethan M. Alt, Xiuya Chang, Xun Jiang, Qing Liu, May Mo, H. Amy Xia, and Joseph G. Ibrahim entitled "LEAP: the latent exchangeability prior for borrowing information from historical data". The authors propose a novel method to bridge the incorporation of supplemental information into a study while also identifying potentially exchangeable subgroups to better facilitate information sharing. In this discussion, we highlight the potential relationship with other Bayesian model averaging approaches, such as multisource exchangeability modeling, and provide a brief numeric case study to illustrate how the concepts behind latent exchangeability prior may also improve the performance of existing methods. The results provided by Alt et al. are exciting, and we believe that the method represents a meaningful approach to more efficient information sharing.

摘要

本讨论对伊桑·M·阿尔特、常秀亚、江 Xun、刘清、莫梅、H·艾米·夏和约瑟夫·G·易卜拉欣所著的题为《LEAP:从历史数据中借用信息的潜在可交换性先验》的论文进行了评论。作者提出了一种新颖的方法,既能将补充信息纳入研究,又能识别潜在的可交换亚组,以更好地促进信息共享。在本讨论中,我们强调了它与其他贝叶斯模型平均方法(如多源可交换性建模)的潜在关系,并提供了一个简短的数值案例研究,以说明潜在可交换性先验背后的概念如何也能提高现有方法的性能。阿尔特等人提供的结果令人兴奋,我们认为该方法代表了一种实现更高效信息共享的有意义的途径。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验