Virus Engineering Group, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain.
Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain.
ACS Nano. 2024 Oct 8;18(40):27465-27478. doi: 10.1021/acsnano.4c07948. Epub 2024 Sep 27.
The mechanisms that underlie the spontaneous and faithful assembly of virus particles are guiding the design of self-assembling protein-based nanostructures for biomedical or nanotechnological uses. In this study, the human immunodeficiency virus (HIV-1) capsid was used as a model to investigate what molecular feature(s) may determine whether a protein nanoparticle with the intended architecture, instead of an aberrant particle, will be self-assembled . Attempts of using the HIV-1 capsid protein CA for achieving the self-assembly of cone-shaped nanoparticles that contain CA hexamers and pentamers, similar to authentic viral capsids, had typically yielded hexamer-only tubular particles. We hypothesized that a reduction in the stability of a transient major assembly intermediate, a trimer of CA dimers (ToD), will increase the propensity of CA to assemble into cone-shaped particles instead of tubes. Certain amino acid substitutions at CA-CA interfaces strongly favored the assembly of cone-shaped nanoparticles that resembled authentic HIV-1 capsids. All-atom MD simulations indicated that ToDs formed by CA mutants with increased propensity for assembly into cone-shaped particles are destabilized relative to ToDs formed by wt CA or by another mutant that assembles into tubes. The results also indicated that ToD destabilization is mediated by conformational distortion of different CA-CA interfaces, which removes some interprotein interactions within the ToD. A model is proposed to rationalize the linkage between reduced ToD stability and increased propensity for the formation of CA pentamers during particle growth , favoring the assembly of cone-shaped HIV-1 capsid-like nanoparticles.
病毒颗粒自发且忠实组装的机制正在引导基于蛋白质的自组装纳米结构的设计,用于生物医学或纳米技术用途。在这项研究中,人类免疫缺陷病毒(HIV-1)衣壳被用作模型,以研究什么样的分子特征可能决定具有预期结构的蛋白质纳米颗粒,而不是异常颗粒,将被自组装。使用 HIV-1 衣壳蛋白 CA 尝试实现包含 CA 六聚体和五聚体的锥形纳米颗粒的自组装,类似于真实的病毒衣壳,通常只产生六聚体管状颗粒。我们假设瞬态主要组装中间体三聚体 CA 二聚体(ToD)的稳定性降低将增加 CA 组装成锥形颗粒而不是管状颗粒的倾向。CA 界面处的某些氨基酸取代强烈有利于组装成类似于真实 HIV-1 衣壳的锥形纳米颗粒。全原子 MD 模拟表明,与 wt CA 或组装成管的另一个突变体相比,组装成锥形颗粒的 CA 突变体形成的 ToD 稳定性降低。结果还表明,ToD 失稳是通过不同 CA-CA 界面的构象扭曲介导的,该构象扭曲消除了 ToD 内的一些蛋白间相互作用。提出了一个模型来合理化 ToD 稳定性降低与颗粒生长过程中 CA 五聚体形成倾向增加之间的联系,有利于组装成锥形 HIV-1 衣壳样纳米颗粒。