Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
J Mol Biol. 2011 Jul 22;410(4):534-52. doi: 10.1016/j.jmb.2011.04.073.
Unlike the capsids of icosahedral viruses, retroviral capsids are pleomorphic, with variably curved, closed fullerene shells composed of ∼250 hexamers and exactly 12 pentamers of the viral CA protein. Structures of CA oligomers have been difficult to obtain because the subunit-subunit interactions are inherently weak, and CA tends to spontaneously assemble into capsid-like particles. Guided by a cryoEM-based model of the hexagonal lattice of HIV-1 CA, we used a two-step biochemical strategy to obtain soluble CA hexamers and pentamers for crystallization. First, each oligomer was stabilized by engineering disulfide cross-links between the N-terminal domains of adjacent subunits. Second, the cross-linked oligomers were prevented from polymerizing into hyperstable, capsid-like structures by mutations that weakened the dimeric association between the C-terminal domains that link adjacent oligomers. The X-ray structures revealed that the oligomers are comprised of a fairly rigid, central symmetric ring of N-terminal domains encircled by mobile C-terminal domains. Assembly of the quasi-equivalent oligomers requires remarkably subtle rearrangements in inter-subunit quaternary bonding interactions, and appears to be controlled by an electrostatic switch that favors hexamers over pentamers. An atomic model of the complete HIV-1 capsid was then built using the fullerene cone as a template. Rigid-body rotations around two assembly interfaces are sufficient to generate the full range of continuously varying lattice curvature in the fullerene cone. The steps in determining this HIV-1 capsid atomic model exemplify the synergy of hybrid methods in structural biology, a powerful approach for exploring the structure of pleomorphic macromolecular complexes.
与二十面体病毒的衣壳不同,逆转录病毒的衣壳呈多形性,具有不同程度弯曲的闭合富勒烯壳,由约 250 个六聚体和恰好 12 个五聚体的病毒 CA 蛋白组成。CA 寡聚体的结构很难获得,因为亚基-亚基相互作用本质上较弱,并且 CA 容易自发组装成衣壳样颗粒。在基于 cryoEM 的 HIV-1 CA 六方晶格模型的指导下,我们使用两步生化策略获得可溶的 CA 六聚体和五聚体进行结晶。首先,通过工程化相邻亚基的 N 端结构域之间的二硫键交联来稳定每个寡聚体。其次,通过突变削弱连接相邻寡聚体的 C 端结构域之间的二聚体缔合,防止交联寡聚体聚合形成超稳定的衣壳样结构。X 射线结构表明,寡聚体由相当刚性的中央对称环组成,由可移动的 C 端结构域环绕。准等价寡聚体的组装需要在亚基间四级键相互作用中进行非常微妙的重排,并且似乎受到有利于六聚体而不是五聚体的静电开关的控制。然后使用富勒烯锥作为模板构建完整的 HIV-1 衣壳的原子模型。围绕两个组装界面的刚体旋转足以产生富勒烯锥中全范围连续变化的晶格曲率。确定这种 HIV-1 衣壳原子模型的步骤体现了结构生物学中混合方法的协同作用,这是探索多形大分子复合物结构的有力方法。