Mouli Karthik, Liopo Anton V, McHugh Emily A, Underwood Erica, Zhao Jing, Dash Pramod K, Vo Anh T T, Malojirao Vikas H, Hegde Muralidhar L, Tour James M, Derry Paul J, Kent Thomas A
Center for Genomics and Precision Medicine, Department of Translational Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA.
Department of Chemistry, Rice University, Houston, TX, 77005, USA.
Adv Healthc Mater. 2025 Mar;14(8):e2401629. doi: 10.1002/adhm.202401629. Epub 2024 Sep 27.
Pro-energetic effects of functionalized, oxidized carbon nanozymes (OCNs) are reported. OCNs, derived from harsh acid oxidation of single-wall carbon nanotubes or activated charcoal are previously shown to possess multiple nanozymatic activities including mimicking superoxide dismutase and catalyzing the oxidation of reduced nicotinamide adenine dinucleotide (NADH) to NAD. These actions are predicted to generate a glycolytic shift and enhance mitochondrial energetics under impaired conditions. Impaired mitochondrial energy metabolism is increasingly recognized as an important facet of traumatic brain injury (TBI) pathophysiology and decreases the efficiency of electron transport chain (ETC)-coupled adenosine triphosphate (ATP) and NAD regeneration. In vitro, OCNs promote a pro-aerobic shift in energy metabolism that persists through ETC inhibition and enhances glycolytic flux, glycolytic ATP production, and cellular generation of lactate, a crucial auxiliary substrate for energy metabolism. To address specific mechanisms of iron injury from hemorrhage, OCNs with the iron chelator, deferoxamine (DEF), covalently-linked were synthesized. DEF-linked OCNs induce a glycolytic shift in-vitro and in-vivo in tissue sections from a rat model of TBI complicated by hemorrhagic contusion. OCNs further reduced hemorrhage volumes 3 days following TBI. These results suggest OCNs are promising as pleiotropic mediators of cell and tissue resilience to injury.
据报道,功能化氧化碳纳米酶(OCNs)具有促进能量代谢的作用。OCNs由单壁碳纳米管或活性炭经强酸氧化制得,此前已证明其具有多种纳米酶活性,包括模拟超氧化物歧化酶以及催化还原型烟酰胺腺嘌呤二核苷酸(NADH)氧化为NAD。预计这些作用会在受损条件下引发糖酵解转变并增强线粒体能量代谢。线粒体能量代谢受损日益被认为是创伤性脑损伤(TBI)病理生理学的一个重要方面,会降低电子传递链(ETC)偶联的三磷酸腺苷(ATP)和NAD再生的效率。在体外,OCNs促进能量代谢向需氧方向转变,这种转变在ETC抑制情况下仍持续存在,并增强糖酵解通量、糖酵解ATP生成以及细胞内乳酸生成,乳酸是能量代谢的关键辅助底物。为了探究出血导致铁损伤的具体机制,合成了与铁螯合剂去铁胺(DEF)共价连接的OCNs。与DEF连接的OCNs在体外以及在伴有出血性挫伤的TBI大鼠模型的组织切片中均能在体内诱导糖酵解转变。OCNs还能在TBI后3天进一步减少出血量。这些结果表明,OCNs有望作为细胞和组织对损伤恢复力的多效性介质。