Suppr超能文献

基于频域双注意力对抗网络的血氧水平相关时间序列预测。

Frequency-specific dual-attention based adversarial network for blood oxygen level-dependent time series prediction.

机构信息

Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.

Second Clinical School, Lanzhou University, Lanzhou, China.

出版信息

Hum Brain Mapp. 2024 Oct;45(14):e70032. doi: 10.1002/hbm.70032.

Abstract

Functional magnetic resonance imaging (fMRI) is currently one of the most popular technologies for measuring brain activity in both research and clinical contexts. However, clinical constraints often result in short fMRI scan durations, limiting the diagnostic performance for brain disorders. To address this limitation, we developed an end-to-end frequency-specific dual-attention-based adversarial network (FDAA-Net) to extend the time series of existing blood oxygen level-dependent (BOLD) data, enhancing their diagnostic utility. Our approach leverages the frequency-dependent nature of fMRI signals using variational mode decomposition (VMD), which adaptively tracks brain activity across different frequency bands. We integrated the generative adversarial network (GAN) with a spatial-temporal attention mechanism to fully capture relationships among spatially distributed brain regions and temporally continuous time windows. We also introduced a novel loss function to estimate the upward and downward trends of each frequency component. We validated FDAA-Net on the Human Connectome Project (HCP) database by comparing the original and predicted time series of brain regions in the default mode network (DMN), a key network activated during rest. FDAA-Net effectively overcame linear frequency-specific challenges and outperformed other popular prediction models. Test-retest reliability experiments demonstrated high consistency between the functional connectivity of predicted outcomes and targets. Furthermore, we examined the clinical applicability of FDAA-Net using short-term fMRI data from individuals with autism spectrum disorder (ASD) and major depressive disorder (MDD). The model achieved a maximum predicted sequence length of 40% of the original scan durations. The prolonged time series improved diagnostic performance by 8.0% for ASD and 11.3% for MDD compared with the original sequences. These findings highlight the potential of fMRI time series prediction to enhance diagnostic power of brain disorders in short fMRI scans.

摘要

功能磁共振成像(fMRI)是目前在研究和临床环境中测量大脑活动最受欢迎的技术之一。然而,临床限制通常导致 fMRI 扫描持续时间较短,限制了对大脑疾病的诊断性能。为了解决这一限制,我们开发了一种端到端的基于频域双注意力的对抗网络(FDAA-Net),以扩展现有的血氧水平依赖(BOLD)数据的时间序列,增强其诊断效用。我们的方法利用 fMRI 信号的频域依赖性,使用变分模态分解(VMD)自适应地跟踪不同频带的大脑活动。我们将生成对抗网络(GAN)与时空注意力机制集成,以充分捕捉空间分布的脑区和时间连续的时间窗口之间的关系。我们还引入了一种新的损失函数来估计每个频率分量的上升和下降趋势。我们在人类连接组计划(HCP)数据库上验证了 FDAA-Net,通过比较默认模式网络(DMN)中脑区的原始和预测时间序列,DMN 是静息时激活的关键网络。FDAA-Net 有效地克服了线性频域特定的挑战,优于其他流行的预测模型。测试-重测可靠性实验表明,预测结果和目标之间的功能连接具有很高的一致性。此外,我们使用自闭症谱系障碍(ASD)和重度抑郁症(MDD)个体的短期 fMRI 数据检查了 FDAA-Net 的临床适用性。该模型实现了原始扫描持续时间的 40%的最大预测序列长度。与原始序列相比,延长的时间序列使 ASD 的诊断性能提高了 8.0%,MDD 的诊断性能提高了 11.3%。这些发现突出了 fMRI 时间序列预测在短 fMRI 扫描中增强大脑疾病诊断能力的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf0d/11428273/e4b788809061/HBM-45-e70032-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验