Suppr超能文献

BolT:用于 fMRI 时间序列分析的融合窗口变压器。

BolT: Fused window transformers for fMRI time series analysis.

机构信息

Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey.

Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Neuroscience Program, Bilkent University, Ankara 06800, Turkey.

出版信息

Med Image Anal. 2023 Aug;88:102841. doi: 10.1016/j.media.2023.102841. Epub 2023 May 18.

Abstract

Deep-learning models have enabled performance leaps in analysis of high-dimensional functional MRI (fMRI) data. Yet, many previous methods are suboptimally sensitive for contextual representations across diverse time scales. Here, we present BolT, a blood-oxygen-level-dependent transformer model, for analyzing multi-variate fMRI time series. BolT leverages a cascade of transformer encoders equipped with a novel fused window attention mechanism. Encoding is performed on temporally-overlapped windows within the time series to capture local representations. To integrate information temporally, cross-window attention is computed between base tokens in each window and fringe tokens from neighboring windows. To gradually transition from local to global representations, the extent of window overlap and thereby number of fringe tokens are progressively increased across the cascade. Finally, a novel cross-window regularization is employed to align high-level classification features across the time series. Comprehensive experiments on large-scale public datasets demonstrate the superior performance of BolT against state-of-the-art methods. Furthermore, explanatory analyses to identify landmark time points and regions that contribute most significantly to model decisions corroborate prominent neuroscientific findings in the literature.

摘要

深度学习模型使得对高维功能磁共振成像 (fMRI) 数据的分析取得了显著的进展。然而,许多以前的方法在跨多种时间尺度的上下文表示方面不够敏感。在这里,我们提出了 BolT,这是一种基于血氧水平依赖的变压器模型,用于分析多变量 fMRI 时间序列。BolT 利用了一系列带有新型融合窗口注意力机制的变压器编码器。在时间序列内的重叠窗口上进行编码,以捕获局部表示。为了在时间上整合信息,在每个窗口的基本标记和来自相邻窗口的边缘标记之间计算跨窗口注意力。为了逐渐从局部表示过渡到全局表示,窗口重叠的程度和因此边缘标记的数量在整个级联中逐渐增加。最后,采用新的跨窗口正则化方法来对齐时间序列中的高级分类特征。在大规模公共数据集上的综合实验表明,BolT 相对于最先进的方法具有优越的性能。此外,用于识别对模型决策贡献最大的标志性时间点和区域的解释性分析与文献中的突出神经科学发现相符。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验