Suppr超能文献

一种处理蛋白质-配体结合的量子力学/分子力学自由能计算中显著构象变化的方法。

A Method for Treating Significant Conformational Changes in Alchemical Free Energy Simulations of Protein-Ligand Binding.

机构信息

Department of Chemistry, Columbia University, New York, New York 10027, United States.

Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, United States.

出版信息

J Chem Theory Comput. 2024 Oct 8;20(19):8609-8623. doi: 10.1021/acs.jctc.4c00954. Epub 2024 Sep 27.

Abstract

Relative binding free energy (RBFE) simulation is a rigorous approach to the calculation of quantitatively accurate binding free energy values for protein-ligand binding in which a reference binder is gradually converted to a target binder through alchemical transformation during the simulation. The success of such simulations relies on being able to accurately sample the correct conformational phase space for each alchemical state; however, this becomes a challenge when a significant conformation change occurs between the reference and target binder-receptor complexes. Increasing the simulation time and using enhanced sampling methods can be helpful, but effects can be limited, especially when the free energy barrier between conformations is high or when the correct target complex conformation is difficult to find and maintain. Current RBFE protocols seed the reference complex structure into every alchemical window of the simulation. In our study, we describe an improved protocol in which the reference structure is seeded into the first half of the alchemical windows, and the target structure is seeded into the second half of the alchemical windows. By applying information about the relevant correct end point conformations to different simulation windows from the beginning, the need for large barrier crossings or simulation prediction of the correct structures during an alchemical simulation is in many cases obviated. In the diverse cases we examine below, the simulations yielded free energy predictions that are satisfactory as compared to experiment and superior to running the simulations utilizing the conventional protocol. The method is straightforward to implement for publicly available FEP workflows.

摘要

相对结合自由能 (RBFE) 模拟是一种严格的方法,可用于计算蛋白质-配体结合的定量准确结合自由能值,其中通过模拟过程中的化学转变,逐渐将参考配体转化为目标配体。此类模拟的成功依赖于能够准确地对每个化学态的正确构象相空间进行采样;然而,当参考和目标配体-受体复合物之间发生显著构象变化时,这就成为一个挑战。增加模拟时间和使用增强采样方法可能会有所帮助,但效果可能会受到限制,尤其是当构象之间的自由能势垒较高或难以找到和维持正确的目标复合物构象时。目前的 RBFE 方案将参考复合物结构播种到模拟的每个化学态窗口中。在我们的研究中,我们描述了一种改进的方案,其中将参考结构播种到化学态窗口的前半部分,将目标结构播种到化学态窗口的后半部分。通过从一开始就将有关相关正确终点构象的信息应用于不同的模拟窗口,可以避免在化学模拟过程中需要进行大的势垒穿越或模拟预测正确结构的情况。在我们下面检查的各种情况下,模拟产生的自由能预测与实验相比是令人满意的,并且优于使用传统方案运行模拟的结果。该方法对于公开的 FEP 工作流程来说易于实现。

相似文献

10
Uncertainty Quantification in Alchemical Free Energy Methods.变分自由能方法中的不确定性量化。
J Chem Theory Comput. 2018 Jun 12;14(6):2867-2880. doi: 10.1021/acs.jctc.7b01143. Epub 2018 May 2.

本文引用的文献

2
Quantitatively Accounting for Protein Reorganization in Computer-Aided Drug Design.定量计算计算机辅助药物设计中的蛋白质重排。
J Chem Theory Comput. 2023 Jun 13;19(11):3080-3090. doi: 10.1021/acs.jctc.3c00009. Epub 2023 May 23.
4
Recent Developments in Free Energy Calculations for Drug Discovery.药物发现中自由能计算的最新进展。
Front Mol Biosci. 2021 Aug 11;8:712085. doi: 10.3389/fmolb.2021.712085. eCollection 2021.
5
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
7
Assessment of Binding Affinity via Alchemical Free-Energy Calculations.通过热力学计算评估结合亲和力。
J Chem Inf Model. 2020 Jun 22;60(6):3120-3130. doi: 10.1021/acs.jcim.0c00165. Epub 2020 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验