Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States.
Schrödinger, Inc., 10201 Wateridge Circle, Suite 220, San Diego, California 92121, United States.
J Chem Inf Model. 2023 May 22;63(10):3171-3185. doi: 10.1021/acs.jcim.3c00013. Epub 2023 May 11.
In the hit identification stage of drug discovery, a diverse chemical space needs to be explored to identify initial hits. Contrary to empirical scoring functions, absolute protein-ligand binding free-energy perturbation (ABFEP) provides a theoretically more rigorous and accurate description of protein-ligand binding thermodynamics and could, in principle, greatly improve the hit rates in virtual screening. In this work, we describe an implementation of an accurate and reliable ABFEP method in FEP+. We validated the ABFEP method on eight congeneric compound series binding to eight protein receptors including both neutral and charged ligands. For ligands with net charges, the alchemical ion approach is adopted to avoid artifacts in electrostatic potential energy calculations. The calculated binding free energies correlate with experimental results with a weighted average of = 0.55 for the entire dataset. We also observe an overall root-mean-square error (RMSE) of 1.1 kcal/mol after shifting the zero-point of the simulation data to match the average experimental values. Through ABFEP calculations using apo versus holo protein structures, we demonstrated that the protein conformational and protonation state changes between the apo and holo proteins are the main physical factors contributing to the protein reorganization free energy manifested by the overestimation of raw ABFEP calculated binding free energies using the holo structures of the proteins. Furthermore, we performed ABFEP calculations in three virtual screening applications for hit enrichment. ABFEP greatly improves the hit rates as compared to docking scores or other methods like metadynamics. The good performance of ABFEP in rank ordering compounds demonstrated in this work confirms it as a useful tool to improve the hit rates in virtual screening, thus facilitating hit discovery.
在药物发现的命中鉴定阶段,需要探索多样化的化学空间来鉴定初始命中。与经验评分函数相反,绝对蛋白-配体结合自由能微扰(ABFEP)提供了对蛋白-配体结合热力学更严格和准确的理论描述,并且原则上可以极大地提高虚拟筛选中的命中率。在这项工作中,我们在 FEP+中描述了一种准确可靠的 ABFEP 方法的实现。我们通过将八个同族化合物系列与八个蛋白受体结合的实验验证了 ABFEP 方法,这些受体包括中性和带电配体。对于带有净电荷的配体,采用变分离子方法避免静电势能计算中的人为因素。计算的结合自由能与实验结果相关,整个数据集的加权平均值为 = 0.55。我们还观察到,在将模拟数据的零点移动以匹配平均实验值后,整体均方根误差(RMSE)为 1.1 kcal/mol。通过使用apo 与 holo 蛋白结构进行 ABFEP 计算,我们证明了 apo 和 holo 蛋白之间的蛋白构象和质子化状态变化是导致蛋白重排自由能的主要物理因素,这表现为使用 holo 蛋白结构计算的原始 ABFEP 结合自由能过高。此外,我们在三种虚拟筛选应用中进行了 ABFEP 计算以进行命中富集。与对接评分或其他方法(如元动力学)相比,ABFEP 大大提高了命中率。ABFEP 在排序化合物方面的良好性能在本工作中得到证实,它是提高虚拟筛选中命中率的有用工具,从而促进了命中发现。