Maiuri Tamara, Bazan Carlos Barba, Harding Rachel J, Begeja Nola, Kam Tae-In, Byrne Lauren M, Rodrigues Filipe B, Warner Monica M, Neuman Kaitlyn, Mansoor Muqtasid, Badiee Mohsen, Dasovich Morgan, Wang Keona, Thompson Leslie M, Leung Anthony K L, Andres Sara N, Wild Edward J, Dawson Ted M, Dawson Valina L, Arrowsmith Cheryl H, Truant Ray
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 3Z5, Canada.
Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto ON M5S 3M2, Canada.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2318098121. doi: 10.1073/pnas.2318098121. Epub 2024 Sep 27.
Huntington disease (HD) is a genetic neurodegenerative disease caused by cytosine, adenine, guanine (CAG) expansion in the () gene, translating to an expanded polyglutamine tract in the HTT protein. Age at disease onset correlates to CAG repeat length but varies by decades between individuals with identical repeat lengths. Genome-wide association studies link HD modification to DNA repair and mitochondrial health pathways. Clinical studies show elevated DNA damage in HD, even at the premanifest stage. A major DNA repair node influencing neurodegenerative disease is the PARP pathway. Accumulation of poly adenosine diphosphate (ADP)-ribose (PAR) has been implicated in Alzheimer and Parkinson diseases, as well as cerebellar ataxia. We report that HD mutation carriers have lower cerebrospinal fluid PAR levels than healthy controls, starting at the premanifest stage. Human HD induced pluripotent stem cell-derived neurons and patient-derived fibroblasts have diminished PAR response in the context of elevated DNA damage. We have defined a PAR-binding motif in HTT, detected HTT complexed with PARylated proteins in human cells during stress, and localized HTT to mitotic chromosomes upon inhibition of PAR degradation. Direct HTT PAR binding was measured by fluorescence polarization and visualized by atomic force microscopy at the single molecule level. While wild-type and mutant HTT did not differ in their PAR binding ability, purified wild-type HTT protein increased in vitro PARP1 activity while mutant HTT did not. These results provide insight into an early molecular mechanism of HD, suggesting possible targets for the design of early preventive therapies.
亨廷顿舞蹈症(HD)是一种由()基因中胞嘧啶、腺嘌呤、鸟嘌呤(CAG)重复序列扩增引起的遗传性神经退行性疾病,这导致亨廷顿蛋白(HTT)中多聚谷氨酰胺序列延长。发病年龄与CAG重复序列长度相关,但具有相同重复序列长度的个体之间发病年龄相差可达数十年。全基因组关联研究将HD的修饰与DNA修复和线粒体健康通路联系起来。临床研究表明,即使在疾病前期,HD患者的DNA损伤也会增加。影响神经退行性疾病的一个主要DNA修复节点是聚(腺苷二磷酸核糖)聚合酶(PARP)通路。聚腺苷二磷酸(ADP)-核糖(PAR)的积累与阿尔茨海默病、帕金森病以及小脑共济失调有关。我们报告称,从疾病前期开始,HD突变携带者的脑脊液PAR水平就低于健康对照。在DNA损伤增加的情况下,人类HD诱导多能干细胞衍生的神经元和患者来源的成纤维细胞的PAR反应减弱。我们在HTT中定义了一个PAR结合基序,在应激状态下检测到人类细胞中HTT与PAR化蛋白形成复合物,并在抑制PAR降解后将HTT定位到有丝分裂染色体上。通过荧光偏振测量直接的HTT与PAR的结合,并在单分子水平上通过原子力显微镜进行可视化。虽然野生型和突变型HTT在PAR结合能力上没有差异,但纯化的野生型HTT蛋白可增加体外PARP1活性,而突变型HTT则不能。这些结果为HD的早期分子机制提供了见解,为早期预防性治疗的设计提供了可能的靶点。