Goss Siobhan, Barba Bazan Carlos, Neuman Kaitlyn, Peng Christina, Begeja Nola, Suart Celeste Elisabeth, Truant Ray
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Center for Advanced Light Microscopy (CALM), McMaster University, Hamilton, Ontario, Canada.
PLoS One. 2022 Jun 3;17(6):e0269345. doi: 10.1371/journal.pone.0269345. eCollection 2022.
Live-cell microscopy imaging typically involves the use of high-quality glass-bottom chambers that allow cell culture, gaseous buffer exchange and optical properties suitable for microscopy applications. However, commercial sources of these chambers can add significant annual costs to cell biology laboratories. Consumer products in three-dimensional printing technology, for both Filament Deposition Modeling (FDM) and Masked Stereo Lithography (MSLA), have resulted in more biomedical research labs adopting the use of these devices for prototyping and manufacturing of lab plastic-based items, but rarely consumables. Here we describe a modular, live-cell chamber with multiple design options that can be mixed per experiment. Single reusable carriers and the use of biodegradable plastics, in a hybrid of FDM and MSLA manufacturing methods, reduce plastic waste. The system is easy to adapt to bespoke designs, with concept-to-prototype in a single day, offers significant cost savings to the users over commercial sources, and no loss in dimensional quality or reliability.
活细胞显微镜成像通常需要使用高质量的玻璃底培养皿,这种培养皿能够进行细胞培养、气体缓冲液交换,并具备适合显微镜应用的光学特性。然而,这些培养皿的商业来源会给细胞生物学实验室增加可观的年度成本。三维打印技术中的消费产品,包括熔丝沉积建模(FDM)和掩膜立体光刻(MSLA),使得越来越多的生物医学研究实验室采用这些设备来制作实验室塑料制品的原型和进行制造,但很少用于消耗品。在此,我们描述了一种模块化的活细胞培养皿,它具有多种设计选项,可根据每个实验进行混合。采用FDM和MSLA制造方法相结合的方式,使用单个可重复使用的载体和可生物降解塑料,减少了塑料废弃物。该系统易于适应定制设计,一天内即可从概念转化为原型,与商业来源相比,为用户节省了大量成本,且尺寸质量和可靠性没有损失。